mne.beamformer.
lcmv
(evoked, forward, noise_cov, data_cov, reg=0.01, label=None, pick_ori=None, picks=None, rank=None, verbose=None)¶Linearly Constrained Minimum Variance (LCMV) beamformer.
Compute Linearly Constrained Minimum Variance (LCMV) beamformer on evoked data.
NOTE : This implementation has not been heavily tested so please report any issue or suggestions.
Parameters: | evoked : Evoked
forward : dict
noise_cov : Covariance
data_cov : Covariance
reg : float
label : Label
pick_ori : None | ‘normal’ | ‘max-power’
picks : array-like of int
rank : None | int | dict
verbose : bool, str, int, or None
|
---|---|
Returns: | stc : SourceEstimate | VolSourceEstimate
|
See also
Notes
The original reference is: Van Veen et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. Biomedical Engineering (1997) vol. 44 (9) pp. 867–880
The reference for finding the max-power orientation is: Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. Biomedical Engineering (2004) vol. 51 (10) pp. 1726–34
mne.beamformer.lcmv
¶