mne.beamformer.
tf_dics
(epochs, forward, noise_csds, tmin, tmax, tstep, win_lengths, freq_bins, subtract_evoked=False, mode='fourier', n_ffts=None, mt_bandwidths=None, mt_adaptive=False, mt_low_bias=True, reg=0.05, label=None, pick_ori=None, real_filter=False, verbose=None)[source]¶5D time-frequency beamforming based on DICS.
Calculate source power in time-frequency windows using a spatial filter based on the Dynamic Imaging of Coherent Sources (DICS) beamforming approach [R6868]. For each time window and frequency bin combination cross-spectral density (CSD) is computed and used to create a beamformer spatial filter with noise CSD used for normalization.
Warning
This implementation has not been heavily tested so please report any issues or suggestions.
Parameters: | epochs : Epochs
forward : dict
noise_csds : list of instances of CrossSpectralDensity
tmin : float
tmax : float
tstep : float
win_lengths : list of float
freq_bins : list of tuples of float
subtract_evoked : bool
mode : str
n_ffts : list | None
mt_bandwidths : list of float
mt_adaptive : bool
mt_low_bias : bool
reg : float
label : Label | None
pick_ori : None | ‘normal’
real_filter : bool
verbose : bool, str, int, or None
|
---|---|
Returns: | stcs : list of SourceEstimate | VolSourceEstimate
|
Notes
Dalal et al. [R6868] used a synthetic aperture magnetometry beamformer (SAM) in each time-frequency window instead of DICS.
References
[R6868] | (1, 2, 3) Dalal et al. Five-dimensional neuroimaging: Localization of the time-frequency dynamics of cortical activity. NeuroImage (2008) vol. 40 (4) pp. 1686-1700 |
mne.beamformer.tf_dics
¶