mne.viz.plot_evoked_image

mne.viz.plot_evoked_image(evoked, picks=None, exclude='bads', unit=True, show=True, clim=None, xlim='tight', proj=False, units=None, scalings=None, titles=None, axes=None, cmap='RdBu_r', colorbar=True, mask=None, mask_style=None, mask_cmap='Greys', mask_alpha=0.25, time_unit=None)[source]

Plot evoked data as images.

Parameters:
evoked : instance of Evoked

The evoked data

picks : array-like of int | None

The indices of channels to plot. If None show all.

exclude : list of str | ‘bads’

Channels names to exclude from being shown. If ‘bads’, the bad channels are excluded.

unit : bool

Scale plot with channel (SI) unit.

show : bool

Show figure if True.

clim : dict | None

clim for plots (after scaling has been applied). e.g. clim = dict(eeg=[-20, 20]) Valid keys are eeg, mag, grad, misc. If None, the clim parameter for each channel equals the pyplot default.

xlim : ‘tight’ | tuple | None

xlim for plots.

proj : bool | ‘interactive’

If true SSP projections are applied before display. If ‘interactive’, a check box for reversible selection of SSP projection vectors will be shown.

units : dict | None

The units of the channel types used for axes lables. If None, defaults to dict(eeg='uV', grad='fT/cm', mag='fT').

scalings : dict | None

The scalings of the channel types to be applied for plotting. If None,` defaults to dict(eeg=1e6, grad=1e13, mag=1e15).

titles : dict | None

The titles associated with the channels. If None, defaults to dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers').

axes : instance of Axis | list | None

The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channel types. If instance of Axes, there must be only one channel type plotted.

cmap : matplotlib colormap | (colormap, bool) | ‘interactive’

Colormap. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the scale. Up and down arrows can be used to change the colormap. If ‘interactive’, translates to ('RdBu_r', True). Defaults to 'RdBu_r'.

colorbar : bool

If True, plot a colorbar. Defaults to True.

New in version 0.16.

mask : ndarray | None

An array of booleans of the same shape as the data. Entries of the data that correspond to `False in the mask are masked (see do_mask below). Useful for, e.g., masking for statistical significance.

New in version 0.16.

mask_style: None | ‘both’ | ‘contour’ | ‘mask’

If mask is not None: if ‘contour’, a contour line is drawn around the masked areas (True in mask). If ‘mask’, entries not True in mask are shown transparently. If ‘both’, both a contour and transparency are used. If None, defaults to ‘both’ if mask is not None, and is ignored otherwise.

New in version 0.16.

mask_cmap : matplotlib colormap | (colormap, bool) | ‘interactive’

The colormap chosen for masked parts of the image (see below), if mask is not None. If None, cmap is reused. Defaults to Greys. Not interactive. Otherwise, as cmap.

mask_alpha : float

A float between 0 and 1. If mask is not None, this sets the alpha level (degree of transparency) for the masked-out segments. I.e., if 0, masked-out segments are not visible at all. Defaults to .25.

New in version 0.16.

time_unit : str

The units for the time axis, can be “ms” (default in 0.16) or “s” (will become the default in 0.17).

New in version 0.16.

Returns:
fig : instance of matplotlib.figure.Figure

Figure containing the images.