Note
Click here to download the full example code
MNE-Python provides a range of tools for statistical hypothesis testing and the visualisation of the results. Here, we show a few options for exploratory and confirmatory tests - e.g., targeted t-tests, cluster-based permutation approaches (here with Threshold-Free Cluster Enhancement); and how to visualise the results.
The underlying data comes from [1]; we contrast long vs. short words. TFCE is described in [2].
[1] | Dufau, S., Grainger, J., Midgley, KJ., Holcomb, PJ. A thousand words are worth a picture: Snapshots of printed-word processing in an event-related potential megastudy. Psychological Science, 2015 |
[2] | Smith and Nichols 2009, “Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence, and localisation in cluster inference”, NeuroImage 44 (2009) 83-98. |
import matplotlib.pyplot as plt
from scipy.stats import ttest_ind
import numpy as np
import mne
from mne.channels import find_layout, find_ch_connectivity
from mne.stats import spatio_temporal_cluster_test
np.random.seed(0)
# Load the data
path = mne.datasets.kiloword.data_path() + '/kword_metadata-epo.fif'
epochs = mne.read_epochs(path)
name = "NumberOfLetters"
# Split up the data by the median length in letters via the attached metadata
median_value = str(epochs.metadata[name].median())
long = epochs[name + " > " + median_value]
short = epochs[name + " < " + median_value]
If we have a specific point in space and time we wish to test, it can be
convenient to convert the data into Pandas Dataframe format. In this case,
the mne.Epochs
object has a convenient
mne.Epochs.to_data_frame()
method, which returns a dataframe.
This dataframe can then be queried for specific time windows and sensors.
The extracted data can be submitted to standard statistical tests. Here,
we conduct t-tests on the difference between long and short words.
time_windows = ((200, 250), (350, 450))
elecs = ["Fz", "Cz", "Pz"]
# display the EEG data in Pandas format (first 5 rows)
print(epochs.to_data_frame()[elecs].head())
report = "{elec}, time: {tmin}-{tmax} msec; t({df})={t_val:.3f}, p={p:.3f}"
print("\nTargeted statistical test results:")
for (tmin, tmax) in time_windows:
for elec in elecs:
# extract data
time_win = "{} < time < {}".format(tmin, tmax)
A = long.to_data_frame().query(time_win)[elec].groupby("condition")
B = short.to_data_frame().query(time_win)[elec].groupby("condition")
# conduct t test
t, p = ttest_ind(A.mean(), B.mean())
# display results
format_dict = dict(elec=elec, tmin=tmin, tmax=tmax,
df=len(epochs.events) - 2, t_val=t, p=p)
print(report.format(**format_dict))
Out:
signal Fz Cz Pz
condition epoch time
film 0 -100 0.421970 0.251970 0.398182
-96 0.453939 0.232879 0.222424
-92 0.465606 0.194242 0.018485
-88 0.468182 0.158939 -0.173485
-84 0.483485 0.159242 -0.312121
Targeted statistical test results:
Fz, time: 200-250 msec; t(958)=-0.634, p=0.526
Cz, time: 200-250 msec; t(958)=-2.842, p=0.005
Pz, time: 200-250 msec; t(958)=-3.746, p=0.000
Fz, time: 350-450 msec; t(958)=5.192, p=0.000
Cz, time: 350-450 msec; t(958)=5.555, p=0.000
Pz, time: 350-450 msec; t(958)=6.353, p=0.000
Absent specific hypotheses, we can also conduct an exploratory mass-univariate analysis at all sensors and time points. This requires correcting for multiple tests. MNE offers various methods for this; amongst them, cluster-based permutation methods allow deriving power from the spatio-temoral correlation structure of the data. Here, we use TFCE.
# Calculate statistical thresholds
con = find_ch_connectivity(epochs.info, "eeg")
# Extract data: transpose because the cluster test requires channels to be last
# In this case, inference is done over items. In the same manner, we could
# also conduct the test over, e.g., subjects.
X = [long.get_data().transpose(0, 2, 1),
short.get_data().transpose(0, 2, 1)]
tfce = dict(start=.2, step=.2)
t_obs, clusters, cluster_pv, h0 = spatio_temporal_cluster_test(
X, tfce, n_permutations=100)
significant_points = cluster_pv.reshape(t_obs.shape).T < .05
print(str(significant_points.sum()) + " points selected by TFCE ...")
Out:
1461 points selected by TFCE ...
The results of these mass univariate analyses can be visualised by plotting
mne.Evoked
objects as images (via mne.Evoked.plot_image
)
and masking points for significance.
Here, we group channels by Regions of Interest to facilitate localising
effects on the head.
# We need an evoked object to plot the image to be masked
evoked = mne.combine_evoked([long.average(), -short.average()],
weights='equal') # calculate difference wave
time_unit = dict(time_unit="s")
evoked.plot_joint(title="Long vs. short words", ts_args=time_unit,
topomap_args=time_unit) # show difference wave
# Create ROIs by checking channel labels
pos = find_layout(epochs.info).pos
rois = dict()
for pick, channel in enumerate(epochs.ch_names):
last_char = channel[-1] # for 10/20, last letter codes the hemisphere
roi = ("Midline" if last_char in "z12" else
("Left" if int(last_char) % 2 else "Right"))
rois[roi] = rois.get(roi, list()) + [pick]
# sort channels from front to center
# (y-coordinate of the position info in the layout)
rois = {roi: np.array(picks)[pos[picks, 1].argsort()]
for roi, picks in rois.items()}
# Visualize the results
fig, axes = plt.subplots(nrows=3, figsize=(8, 8))
vmax = np.abs(evoked.data).max() * 1e6
# Iterate over ROIs and axes
axes = axes.ravel().tolist()
for roi_name, ax in zip(sorted(rois.keys()), axes):
picks = rois[roi_name]
evoked.plot_image(picks=picks, axes=ax, colorbar=False, show=False,
clim=dict(eeg=(-vmax, vmax)), mask=significant_points,
**time_unit)
evoked.nave = None
ax.set_yticks((np.arange(len(picks))) + .5)
ax.set_yticklabels([evoked.ch_names[idx] for idx in picks])
if not ax.is_last_row(): # remove xticklabels for all but bottom axis
ax.set(xlabel='', xticklabels=[])
ax.set(ylabel='', title=roi_name)
fig.colorbar(ax.images[-1], ax=axes, fraction=.1, aspect=20,
pad=.05, shrink=2 / 3, label="uV", orientation="vertical")
plt.show()
Total running time of the script: ( 0 minutes 37.015 seconds)