2 samples permutation test on source data with spatio-temporal clustering

Tests if the source space data are significantly different between 2 groups of subjects (simulated here using one subject’s data). The multiple comparisons problem is addressed with a cluster-level permutation test across space and time.

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Eric Larson <larson.eric.d@gmail.com>
# License: BSD (3-clause)

import os.path as op

import numpy as np
from scipy import stats as stats

import mne
from mne import spatial_src_connectivity
from mne.stats import spatio_temporal_cluster_test, summarize_clusters_stc
from mne.datasets import sample


Set parameters

data_path = sample.data_path()
stc_fname = data_path + '/MEG/sample/sample_audvis-meg-lh.stc'
subjects_dir = data_path + '/subjects'
src_fname = subjects_dir + '/fsaverage/bem/fsaverage-ico-5-src.fif'

# Load stc to in common cortical space (fsaverage)
stc = mne.read_source_estimate(stc_fname)
stc.resample(50, npad='auto')

# Read the source space we are morphing to
src = mne.read_source_spaces(src_fname)
fsave_vertices = [s['vertno'] for s in src]
morph = mne.compute_source_morph(stc, 'sample', 'fsaverage',
                                 spacing=fsave_vertices, smooth=20,
stc = morph.apply(stc)
n_vertices_fsave, n_times = stc.data.shape
tstep = stc.tstep

n_subjects1, n_subjects2 = 7, 9
print('Simulating data for %d and %d subjects.' % (n_subjects1, n_subjects2))

#    Let's make sure our results replicate, so set the seed.
X1 = np.random.randn(n_vertices_fsave, n_times, n_subjects1) * 10
X2 = np.random.randn(n_vertices_fsave, n_times, n_subjects2) * 10
X1[:, :, :] += stc.data[:, :, np.newaxis]
# make the activity bigger for the second set of subjects
X2[:, :, :] += 3 * stc.data[:, :, np.newaxis]

#    We want to compare the overall activity levels for each subject
X1 = np.abs(X1)  # only magnitude
X2 = np.abs(X2)  # only magnitude


    Reading a source space...
    Reading a source space...
    2 source spaces read
Simulating data for 7 and 9 subjects.

Compute statistic

To use an algorithm optimized for spatio-temporal clustering, we just pass the spatial connectivity matrix (instead of spatio-temporal)

print('Computing connectivity.')
connectivity = spatial_src_connectivity(src)

#    Note that X needs to be a list of multi-dimensional array of shape
#    samples (subjects_k) x time x space, so we permute dimensions
X1 = np.transpose(X1, [2, 1, 0])
X2 = np.transpose(X2, [2, 1, 0])
X = [X1, X2]

#    Now let's actually do the clustering. This can take a long time...
#    Here we set the threshold quite high to reduce computation.
p_threshold = 0.0001
f_threshold = stats.distributions.f.ppf(1. - p_threshold / 2.,
                                        n_subjects1 - 1, n_subjects2 - 1)
T_obs, clusters, cluster_p_values, H0 = clu =\
    spatio_temporal_cluster_test(X, connectivity=connectivity, n_jobs=1,
                                 threshold=f_threshold, buffer_size=None)
#    Now select the clusters that are sig. at p < 0.05 (note that this value
#    is multiple-comparisons corrected).
good_cluster_inds = np.where(cluster_p_values < 0.05)[0]


Computing connectivity.
-- number of connected vertices : 20484
stat_fun(H1): min=0.000000 max=293.441888
Running initial clustering
Found 234 clusters
Permuting 1023 times...

Computing cluster p-values

Visualize the clusters

print('Visualizing clusters.')

#    Now let's build a convenient representation of each cluster, where each
#    cluster becomes a "time point" in the SourceEstimate
fsave_vertices = [np.arange(10242), np.arange(10242)]
stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep,

#    Let's actually plot the first "time point" in the SourceEstimate, which
#    shows all the clusters, weighted by duration
subjects_dir = op.join(data_path, 'subjects')
# blue blobs are for condition A != condition B
brain = stc_all_cluster_vis.plot('fsaverage', hemi='both',
                                 views='lateral', subjects_dir=subjects_dir,
                                 time_label='Duration significant (ms)',
                                 clim=dict(kind='value', lims=[0, 1, 40]))


Visualizing clusters.

Total running time of the script: ( 0 minutes 44.519 seconds)

Estimated memory usage: 109 MB

Gallery generated by Sphinx-Gallery