mne.stats.ttest_1samp_no_p¶
-
mne.stats.
ttest_1samp_no_p
(X, sigma=0, method='relative')[source]¶ Perform one-sample t-test.
This is a modified version of
scipy.stats.ttest_1samp()
that avoids a (relatively) time-consuming p-value calculation, and can adjust for implausibly small variance values [1].- Parameters
- X
array
Array to return t-values for.
- sigma
float
The variance estate will be given by “var + sigma * max(var)” or “var + sigma”, depending on “method”. By default this is 0 (no adjustment). See Notes for details.
- method
str
If ‘relative’, the minimum variance estimate will be sigma * max(var), if ‘absolute’ the minimum variance estimate will be sigma.
- X
- Returns
- t
array
t-values, potentially adjusted using the hat method.
- t
Notes
To use the “hat” adjustment method [1], a value of
sigma=1e-3
may be a reasonable choice.You can use the conversion from
scipy.stats.distributions.t.ppf
:thresh = -scipy.stats.distributions.t.ppf(p_thresh, n_samples - 1) / 2.
to convert a desired p-value threshold to 2-tailed t-value threshold. For one-tailed tests,
thresh
in the above should be multiplied by 2 (and fortail=-1
, multiplied by-1
).References