mne.decoding.UnsupervisedSpatialFilter¶
-
class
mne.decoding.
UnsupervisedSpatialFilter
(estimator, average=False)[source]¶ Use unsupervised spatial filtering across time and samples.
- Parameters
- estimatorinstance of
sklearn.base.BaseEstimator
Estimator using some decomposition algorithm.
- averagebool, default
False
If True, the estimator is fitted on the average across samples (e.g. epochs).
- estimatorinstance of
Methods
__hash__
(/)Return hash(self).
fit
(X[, y])Fit the spatial filters.
fit_transform
(X[, y])Transform the data to its filtered components after fitting.
get_params
([deep])Get parameters for this estimator.
Inverse transform the data to its original space.
set_params
(**params)Set the parameters of this estimator.
transform
(X)Transform the data to its spatial filters.
-
fit
(X, y=None)[source]¶ Fit the spatial filters.
- Parameters
- Returns
- selfinstance of
UnsupervisedSpatialFilter
Return the modified instance.
- selfinstance of
-
fit_transform
(X, y=None)[source]¶ Transform the data to its filtered components after fitting.
- Parameters
- Returns
- X
array
, shape (n_epochs, n_channels, n_times) The transformed data.
- X
Examples using
fit_transform
:
-
set_params
(**params)[source]¶ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object. Returns ——- self