mne.viz.plot_volume_source_estimates¶
- 
mne.viz.plot_volume_source_estimates(stc, src, subject=None, subjects_dir=None, mode='stat_map', bg_img='T1.mgz', colorbar=True, colormap='auto', clim='auto', transparent=None, show=True, initial_time=None, initial_pos=None, verbose=None)[source]¶
- Plot Nutmeg style volumetric source estimates using nilearn. - Parameters
- stcVectorSourceEstimate
- The vector source estimate to plot. 
- srcinstance of SourceSpaces| instance ofSourceMorph
- The source space. Can also be a SourceMorph to morph the STC to a new subject (see Examples). - Changed in version 0.18: Support for - SpatialImage.
- subjectstr|None
- The subject name corresponding to FreeSurfer environment variable SUBJECT. If None stc.subject will be used. If that is None, the environment will be used. 
- subjects_dirstr|None
- The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR. 
- modestr
- The plotting mode to use. Either ‘stat_map’ (default) or ‘glass_brain’. For “glass_brain”, activation absolute values are displayed after being transformed to a standard MNI brain. 
- bg_imginstance of SpatialImage|str
- The background image used in the nilearn plotting function. Can also be a string to use the - bg_imgfile in the subject’s MRI directory (default is- 'T1.mgz'). Not used in “glass brain” plotting.
- colorbarbool, optional
- If True, display a colorbar on the right of the plots. 
- colormapstr|np.ndarrayoffloat, shape(n_colors, 3 | 4)
- Name of colormap to use or a custom look up table. If array, must be (n x 3) or (n x 4) array for with RGB or RGBA values between 0 and 255. 
- climstr|dict
- Colorbar properties specification. If ‘auto’, set clim automatically based on data percentiles. If dict, should contain: - kind‘value’ | ‘percent’
- Flag to specify type of limits. 
- limslist | np.ndarray | tuple of float, 3 elements
- Lower, middle, and upper bounds for colormap. 
- pos_limslist | np.ndarray | tuple of float, 3 elements
- Lower, middle, and upper bound for colormap. Positive values will be mirrored directly across zero during colormap construction to obtain negative control points. 
 - Note - Only one of - limsor- pos_limsshould be provided. Only sequential colormaps should be used with- lims, and only divergent colormaps should be used with- pos_lims.
- transparentbool | None
- If True: use a linear transparency between fmin and fmid and make values below fmin fully transparent (symmetrically for divergent colormaps). None will choose automatically based on colormap type. 
- showbool
- Show figures if True. Defaults to True. 
- initial_timefloat|None
- The initial time to plot. Can be None (default) to use the time point with the maximal absolute value activation across all voxels or the - initial_posvoxel (if- initial_pos is Noneor not, respectively).- New in version 0.19. 
- initial_posndarray, shape (3,) |None
- The initial position to use (in m). Can be None (default) to use the voxel with the maximum absolute value activation across all time points or at - initial_time(if- initial_time is Noneor not, respectively).- New in version 0.19. 
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only.
 
- stc
- Returns
- figinstance of Figure
- The figure. 
 
- figinstance of 
 - Notes - Click on any of the anatomical slices to explore the time series. Clicking on any time point will bring up the corresponding anatomical map. - The left and right arrow keys can be used to navigate in time. To move in time by larger steps, use shift+left and shift+right. - In - 'glass_brain'mode, values are transformed to the standard MNI brain using the FreeSurfer Talairach transformation- $SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm.- New in version 0.17. - Changed in version 0.19: MRI volumes are automatically transformed to MNI space in - 'glass_brain'mode.- Examples - Passing a - mne.SourceMorphas the- srcparameter can be useful for plotting in a different subject’s space (here, a- 'sample'STC in- 'fsaverage'’s space):- >>> morph = mne.compute_source_morph(src_sample, subject_to='fsaverage') >>> fig = stc_vol_sample.plot(morph)