audiovisual
trial_type subject run Auditory/Left Auditory/Right Button Smiley Visual/Left Visual/Right
01 01 72 73 16 15 73 71

1 rows × 8 columns

Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
Time course (EEG)
Global field power
Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
Full-epochs decoding
Based on N=1 subjects. Each dot represents the mean cross-validation score for a single subject. The dashed line is expected chance performance.
  """MNE Sample Data: M/EEG combined processing."""

import mne

bids_root = "~/mne_data/ds000248"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds000248_base"
subjects_dir = f"{bids_root}/derivatives/freesurfer/subjects"

subjects = ["01"]
rename_events = {"Smiley": "Emoji", "Button": "Switch"}
conditions = ["Auditory", "Visual", "Auditory/Left", "Auditory/Right"]
epochs_metadata_query = "index > 0"  # Just for testing!
contrasts = [("Visual", "Auditory"), ("Auditory/Right", "Auditory/Left")]

time_frequency_conditions = ["Auditory", "Visual"]

ch_types = ["meg", "eeg"]
mf_reference_run = "01"
find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True


def noise_cov(bp):
    """Estimate the noise covariance."""
    # Use pre-stimulus period as noise source
    bp = bp.copy().update(suffix="epo")
    if not bp.fpath.exists():
        bp.update(split="01")
    epo = mne.read_epochs(bp)
    cov = mne.compute_covariance(epo, rank="info", tmax=0)
    return cov


spatial_filter = "ssp"
n_proj_eog = dict(n_mag=1, n_grad=1, n_eeg=1)
n_proj_ecg = dict(n_mag=1, n_grad=1, n_eeg=0)
ssp_meg = "combined"
ecg_proj_from_average = True
eog_proj_from_average = False
epochs_decim = 4

bem_mri_images = "FLASH"
recreate_bem = True

n_jobs = 2


def mri_t1_path_generator(bids_path):
    """Return the path to a T1 image."""
    # don't really do any modifications – just for testing!
    return bids_path

  Platform             Linux-5.15.0-1053-aws-x86_64-with-glibc2.35
Python               3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable           /home/circleci/python_env/bin/python3.10
CPU                  x86_64 (36 cores)
Memory               68.6 GB

Core
├☑ mne               1.7.0.dev156+g415e7f68e (devel, latest release is 1.6.1)
├☑ numpy             1.26.4 (OpenBLAS 0.3.23.dev with 2 threads)
├☑ scipy             1.12.0
└☑ matplotlib        3.8.3 (backend=agg)

Numerical (optional)
├☑ sklearn           1.4.1.post1
├☑ numba             0.59.1
├☑ nibabel           5.2.1
├☑ pandas            2.2.1
└☐ unavailable       nilearn, dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista           0.43.4 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.0
├☑ vtk               9.3.0
├☑ qtpy              2.4.1 (PyQt6=6.6.0)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
├☑ mne-bids          0.15.0.dev43+g17d20c132
├☑ mne-bids-pipeline 1.8.0
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo