auditory | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
trial_type | subject | session | left/noise | left/tone/2500 | left/tone/4000 | left/tone/500 | right/noise | right/tone/2500 | right/tone/4000 | right/tone/500 | |
mind002 | 01 | 99 | 108 | 100 | 109 | 119 | 105 | 106 | 104 |
1 rows × 10 columns
"""MIND DATA.
M.P. Weisend, F.M. Hanlon, R. Montaño, S.P. Ahlfors, A.C. Leuthold,
D. Pantazis, J.C. Mosher, A.P. Georgopoulos, M.S. Hämäläinen, C.J.
Aine,, V. (2007).
Paving the way for cross-site pooling of magnetoencephalography (MEG) data.
International Congress Series, Volume 1300, Pages 615-618.
"""
# This has auditory, median, indx, visual, rest, and emptyroom but let's just
# process the auditory (it's the smallest after rest)
bids_root = "~/mne_data/ds004107"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds004107"
subjects = ["mind002"]
sessions = ["01"]
conditions = ["left", "right"] # there are also tone and noise
task = "auditory"
ch_types = ["meg"]
crop_runs = (0, 120) # to speed up computations
spatial_filter = "ssp"
l_freq = 1.0
h_freq = 40.0
Platform Linux-5.15.0-1053-aws-x86_64-with-glibc2.35
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable /home/circleci/python_env/bin/python3.10
CPU x86_64 (36 cores)
Memory 68.6 GB
Core
├☑ mne 1.7.0.dev156+g415e7f68e (devel, latest release is 1.6.1)
├☑ numpy 1.26.4 (OpenBLAS 0.3.23.dev with 2 threads)
├☑ scipy 1.12.0
└☑ matplotlib 3.8.3 (backend=agg)
Numerical (optional)
├☑ sklearn 1.4.1.post1
├☑ numba 0.59.1
├☑ nibabel 5.2.1
├☑ pandas 2.2.1
└☐ unavailable nilearn, dipy, openmeeg, cupy
Visualization (optional)
├☑ pyvista 0.43.4 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt 0.11.0
├☑ vtk 9.3.0
├☑ qtpy 2.4.1 (PyQt6=6.6.0)
└☐ unavailable ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids 0.15.0.dev43+g17d20c132
├☑ mne-bids-pipeline 1.8.0
└☐ unavailable mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo