funloc
trial_type subject auditory/deviant auditory/standard visual/deviant visual/standard
01 10 60 10 60
02 10 60 10 60

2 rows × 5 columns

General
Filename(s) sub-01_task-funloc_ave.fif
MNE object type Evoked
Measurement date 2012-09-11 at 22:41:49 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 2 epochs
Condition Grand average: auditory/standard
Time range -0.200 – 0.500 s
Baseline -0.200 – 0.000 s
Sampling frequency 200.00 Hz
Time points 141
Channels
Magnetometers
Gradiometers
EEG
Head & sensor digitization 197 points
Filters
Highpass 0.03 Hz
Lowpass 50.00 Hz
Projections Average EEG reference (on)
meg-ECG--0.500-0.500)-PCA-01 (on)
meg-EOG--0.500-0.500)-PCA-01 (on)
eeg-EOG--0.500-0.500)-PCA-01 (on)
eeg-EOG--0.500-0.500)-PCA-02 (on)
Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
General
Filename(s) sub-01_task-funloc_ave.fif
MNE object type Evoked
Measurement date 2012-09-11 at 22:41:49 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 2 epochs
Condition Grand average: visual/standard
Time range -0.200 – 0.500 s
Baseline -0.200 – 0.000 s
Sampling frequency 200.00 Hz
Time points 141
Channels
Magnetometers
Gradiometers
EEG
Head & sensor digitization 197 points
Filters
Highpass 0.03 Hz
Lowpass 50.00 Hz
Projections Average EEG reference (on)
meg-ECG--0.500-0.500)-PCA-01 (on)
meg-EOG--0.500-0.500)-PCA-01 (on)
eeg-EOG--0.500-0.500)-PCA-01 (on)
eeg-EOG--0.500-0.500)-PCA-02 (on)
Time course (Magnetometers)
Time course (Gradiometers)
Time course (EEG)
Global field power
  """Funloc data."""

from pathlib import Path

data_root = Path("~/mne_data").expanduser().resolve()
bids_root = data_root / "MNE-funloc-data"
deriv_root = data_root / "derivatives" / "mne-bids-pipeline" / "MNE-funloc-data"
subjects_dir = bids_root / "derivatives" / "freesurfer" / "subjects"
task = "funloc"
ch_types = ["meg", "eeg"]
data_type = "meg"

# filter
l_freq = None
h_freq = 50.0
# maxfilter
use_maxwell_filter: bool = True
crop_runs = (40, 190)
mf_st_duration = 60.0
# SSP
spatial_filter = "ssp"
ssp_ecg_channel = {"sub-01": "MEG0111", "sub-02": "MEG0141"}
n_proj_eog = dict(n_mag=1, n_grad=1, n_eeg=2)
n_proj_ecg = dict(n_mag=1, n_grad=1, n_eeg=0)

# Epochs
epochs_tmin = -0.2
epochs_tmax = 0.5
epochs_decim = 5  # 1000 -> 200 Hz
baseline = (None, 0)
conditions = [
    "auditory/standard",
    # "auditory/deviant",
    "visual/standard",
    # "visual/deviant",
]
decode = False
decoding_time_generalization = False

# contrasts
# contrasts = [("auditory", "visual")]

  Platform             Linux-5.15.0-1077-aws-x86_64-with-glibc2.35
Python               3.12.4 (main, Jun  8 2024, 23:40:19) [GCC 11.4.0]
Executable           /home/circleci/.pyenv/versions/3.12.4/bin/python3.12
CPU                  Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (36 cores)
Memory               68.6 GiB

Core
├☑ mne               1.10.0.dev67+gbe27cf8dd (devel, latest release is 1.9.0)
├☑ numpy             2.1.3 (OpenBLAS 0.3.27 with 2 threads)
├☑ scipy             1.15.2
└☑ matplotlib        3.10.1 (backend=agg)

Numerical (optional)
├☑ sklearn           1.6.1
├☑ numba             0.61.0
├☑ nibabel           5.3.2
├☑ pandas            2.2.3
├☑ h5io              0.2.4
├☑ h5py              3.13.0
└☐ unavailable       nilearn, dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista           0.44.2 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.3 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.2
├☑ vtk               9.3.1
├☑ qtpy              2.4.3 (PyQt6=6.8.2)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
├☑ mne-bids          0.17.0.dev32+g3a25345
├☑ mne-bids-pipeline 1.10.0.dev68+gb995b51
├☑ edfio             0.4.6
├☑ pybv              0.7.6
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, eeglabio, mffpy