| facerecognition | |||||||
|---|---|---|---|---|---|---|---|
| trial_type | subject | session | run | Famous | Scrambled | Unfamiliar | |
| 01 | meg | 01 | 49 | 50 | 47 | ||
| 01 | meg | 02 | 49 | 50 | 49 | ||
| 01 | meg | 03 | 50 | 50 | 50 | ||
| 01 | meg | 04 | 48 | 49 | 50 | ||
| 01 | meg | 05 | 49 | 49 | 50 | ||
| 01 | meg | 06 | 50 | 49 | 49 | ||
6 rows × 6 columns
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Famous | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Unfamiliar | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Famous - Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Unfamiliar - Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Famous - Unfamiliar | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
  """Faces dataset."""
bids_root = "~/mne_data/ds000117"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds000117"
task = "facerecognition"
ch_types = ["meg"]
runs = ["01", "02"]
sessions = ["meg"]
subjects = ["01"]
raw_resample_sfreq = 125.0
crop_runs = (0, 300)  # Reduce memory usage on CI system
find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
process_empty_room = True
mf_reference_run = "02"
mf_cal_fname = bids_root + "/derivatives/meg_derivatives/sss_cal.dat"
mf_ctc_fname = bids_root + "/derivatives/meg_derivatives/ct_sparse.fif"
mf_int_order = 9
mf_ext_order = 2
reject = {"grad": 4000e-13, "mag": 4e-12}
conditions = ["Famous", "Unfamiliar", "Scrambled"]
contrasts = [
    ("Famous", "Scrambled"),
    ("Unfamiliar", "Scrambled"),
    ("Famous", "Unfamiliar"),
]
decode = True
decoding_time_generalization = True
run_source_estimation = False
    
  Platform             Linux-6.8.0-1039-aws-x86_64-with-glibc2.35
Python               3.12.4 (main, Jun  8 2024, 23:40:19) [GCC 11.4.0]
Executable           /home/circleci/.pyenv/versions/3.12.4/bin/python3.12
CPU                  Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (36 cores)
Memory               4.0 GiB
Core
├☑ mne               1.11.0.dev90+ge50d56542 (development, latest release is 1.10.2)
├☑ numpy             2.3.4 (OpenBLAS 0.3.30 with 2 threads)
├☑ scipy             1.16.2
└☑ matplotlib        3.10.7 (backend=agg)
Numerical (optional)
├☑ sklearn           1.7.2
├☑ numba             0.62.1
├☑ nibabel           5.3.2
├☑ pandas            2.3.3
├☑ h5io              0.2.5
├☑ h5py              3.15.1
└☐ unavailable       nilearn, dipy, openmeeg, cupy
Visualization (optional)
├☑ pyvista           0.46.3 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.3 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.3
├☑ vtk               9.5.2
├☑ qtpy              2.4.3 (PyQt6=6.10.0)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids          0.18.0.dev23+g982570293
├☑ mne-bids-pipeline 1.10.0.dev113+gfd73224c5
├☑ eeglabio          0.1.2
├☑ edfio             0.4.10
├☑ pybv              0.7.6
├☑ defusedxml        0.7.1
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, mffpy, antio