| audiovisual | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| trial_type | subject | run | Auditory/Left | Auditory/Right | Button | Smiley | Visual/Left | Visual/Right | |
| 01 | 01 | 144 | 146 | 32 | 30 | 146 | 142 | ||
1 rows × 8 columns
| General | ||
|---|---|---|
| Filename(s) | sub-01_task-audiovisual_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 1921-08-16 at 19:01:10 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: 0.50 × Auditory/Left + 0.50 × Auditory/Right | |
| Time range | -0.200 – 0.499 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 150.15 Hz | |
| Time points | 106 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| Head & sensor digitization | 146 points | |
| Filters | ||
| Highpass | 0.10 Hz | |
| Lowpass | 40.00 Hz | |
| Projections |
Average EEG reference (on)
meg-ECG--0.499-0.499)-PCA-01 (on) meg-EOG--0.499-0.499)-PCA-01 (on) eeg-EOG--0.499-0.499)-PCA-01 (on) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_task-audiovisual_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 1921-08-16 at 19:01:10 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: 0.51 × Visual/Left + 0.49 × Visual/Right | |
| Time range | -0.200 – 0.499 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 150.15 Hz | |
| Time points | 106 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| Head & sensor digitization | 146 points | |
| Filters | ||
| Highpass | 0.10 Hz | |
| Lowpass | 40.00 Hz | |
| Projections |
Average EEG reference (on)
meg-ECG--0.499-0.499)-PCA-01 (on) meg-EOG--0.499-0.499)-PCA-01 (on) eeg-EOG--0.499-0.499)-PCA-01 (on) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_task-audiovisual_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 1921-08-16 at 19:01:10 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Auditory/Left | |
| Time range | -0.200 – 0.499 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 150.15 Hz | |
| Time points | 106 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| Head & sensor digitization | 146 points | |
| Filters | ||
| Highpass | 0.10 Hz | |
| Lowpass | 40.00 Hz | |
| Projections |
Average EEG reference (on)
meg-ECG--0.499-0.499)-PCA-01 (on) meg-EOG--0.499-0.499)-PCA-01 (on) eeg-EOG--0.499-0.499)-PCA-01 (on) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_task-audiovisual_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 1921-08-16 at 19:01:10 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Auditory/Right | |
| Time range | -0.200 – 0.499 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 150.15 Hz | |
| Time points | 106 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| Head & sensor digitization | 146 points | |
| Filters | ||
| Highpass | 0.10 Hz | |
| Lowpass | 40.00 Hz | |
| Projections |
Average EEG reference (on)
meg-ECG--0.499-0.499)-PCA-01 (on) meg-EOG--0.499-0.499)-PCA-01 (on) eeg-EOG--0.499-0.499)-PCA-01 (on) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_task-audiovisual_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 1921-08-16 at 19:01:10 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: (0.51 × Visual/Left + 0.49 × Visual/Right) - (0.50 × Auditory/Left + 0.50 × Auditory/Right) | |
| Time range | -0.200 – 0.499 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 150.15 Hz | |
| Time points | 106 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| Head & sensor digitization | 146 points | |
| Filters | ||
| Highpass | 0.10 Hz | |
| Lowpass | 40.00 Hz | |
| Projections |
Average EEG reference (on)
meg-ECG--0.499-0.499)-PCA-01 (on) meg-EOG--0.499-0.499)-PCA-01 (on) eeg-EOG--0.499-0.499)-PCA-01 (on) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_task-audiovisual_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 1921-08-16 at 19:01:10 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Auditory/Right - Auditory/Left | |
| Time range | -0.200 – 0.499 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 150.15 Hz | |
| Time points | 106 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| Head & sensor digitization | 146 points | |
| Filters | ||
| Highpass | 0.10 Hz | |
| Lowpass | 40.00 Hz | |
| Projections |
Average EEG reference (on)
meg-ECG--0.499-0.499)-PCA-01 (on) meg-EOG--0.499-0.499)-PCA-01 (on) eeg-EOG--0.499-0.499)-PCA-01 (on) |
|
"""MNE Sample Data: M/EEG combined processing."""
import mne
import mne_bids
bids_root = "~/mne_data/ds000248"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds000248_base"
subjects_dir = f"{bids_root}/derivatives/freesurfer/subjects"
subjects = ["01"]
rename_events = {"Smiley": "Emoji", "Button": "Switch"}
conditions = ["Auditory", "Visual", "Auditory/Left", "Auditory/Right"]
epochs_metadata_query = "index > 0" # Just for testing!
contrasts = [("Visual", "Auditory"), ("Auditory/Right", "Auditory/Left")]
time_frequency_conditions = ["Auditory", "Visual"]
ch_types = ["meg", "eeg"]
mf_reference_run = "01"
find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
def noise_cov(bp: mne_bids.BIDSPath) -> mne.Covariance:
"""Estimate the noise covariance."""
# Use pre-stimulus period as noise source
bp = bp.copy().update(suffix="epo")
if not bp.fpath.exists():
bp.update(split="01")
epo = mne.read_epochs(bp)
cov = mne.compute_covariance(epo, rank="info", tmax=0)
return cov
spatial_filter = "ssp"
n_proj_eog = dict(n_mag=1, n_grad=1, n_eeg=1)
n_proj_ecg = dict(n_mag=1, n_grad=1, n_eeg=0)
ssp_meg = "combined"
ecg_proj_from_average = True
eog_proj_from_average = False
epochs_decim = 4
bem_mri_images = "FLASH"
recreate_bem = True
n_jobs = 2
def mri_t1_path_generator(bids_path: mne_bids.BIDSPath) -> mne_bids.BIDSPath:
"""Return the path to a T1 image."""
# don't really do any modifications – just for testing!
return bids_path
Platform Linux-6.8.0-1039-aws-x86_64-with-glibc2.35
Python 3.12.4 (main, Jun 8 2024, 23:40:19) [GCC 11.4.0]
Executable /home/circleci/.pyenv/versions/3.12.4/bin/python3.12
CPU Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (36 cores)
Memory 4.0 GiB
Core
├☑ mne 1.11.0.dev77+g3cfac64bb (unable to check for latest version on GitHub, unknown error: HTTP Error 403: rate limit exceeded)
├☑ numpy 2.3.4 (OpenBLAS 0.3.30 with 2 threads)
├☑ scipy 1.16.2
└☑ matplotlib 3.10.7 (backend=agg)
Numerical (optional)
├☑ sklearn 1.7.2
├☑ numba 0.62.1
├☑ nibabel 5.3.2
├☑ pandas 2.3.3
├☑ h5io 0.2.5
├☑ h5py 3.15.1
└☐ unavailable nilearn, dipy, openmeeg, cupy
Visualization (optional)
├☑ pyvista 0.46.3 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.3 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt 0.11.3
├☑ vtk 9.5.2
├☑ qtpy 2.4.3 (PyQt6=6.9.0)
└☐ unavailable ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids 0.18.0.dev20+g9098c6e6b
├☑ mne-bids-pipeline 1.10.0.dev110+gd5d3b02fe
├☑ eeglabio 0.1.2
├☑ edfio 0.4.10
├☑ pybv 0.7.6
├☑ defusedxml 0.7.1
└☐ unavailable mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, mffpy, antio