| attentionalblink | |||
|---|---|---|---|
| session | subject | cathodaltDCS | |
| 01 | 1550 | 
1 rows × 2 columns
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | Unknown | |
| Participant | sub-01 | |
| Experimenter | Unknown | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: 61450 | |
| Time range | -0.199 – 0.500 s | |
| Baseline | -0.199 – 0.000 s | |
| Sampling frequency | 512.00 Hz | |
| Time points | 359 | |
| Channels | ||
| EEG | ||
| Head & sensor digitization | 67 points | |
| Filters | ||
| Highpass | 0.30 Hz | |
| Lowpass | 40.00 Hz | |
| Projections | Average EEG reference (on) | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | Unknown | |
| Participant | sub-01 | |
| Experimenter | Unknown | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: 61511 | |
| Time range | -0.199 – 0.500 s | |
| Baseline | -0.199 – 0.000 s | |
| Sampling frequency | 512.00 Hz | |
| Time points | 359 | |
| Channels | ||
| EEG | ||
| Head & sensor digitization | 67 points | |
| Filters | ||
| Highpass | 0.30 Hz | |
| Lowpass | 40.00 Hz | |
| Projections | Average EEG reference (on) | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | Unknown | |
| Participant | sub-01 | |
| Experimenter | Unknown | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: 61450 - 61511 | |
| Time range | -0.199 – 0.500 s | |
| Baseline | -0.199 – 0.000 s | |
| Sampling frequency | 512.00 Hz | |
| Time points | 359 | |
| Channels | ||
| EEG | ||
| Head & sensor digitization | 67 points | |
| Filters | ||
| Highpass | 0.30 Hz | |
| Lowpass | 40.00 Hz | |
| Projections | Average EEG reference (on) | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | Unknown | |
| Participant | sub-01 | |
| Experimenter | Unknown | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: (0.92 × 61450 + 0.08 × 61511) - (0.94 × 61450 + 0.06 × 61511) | |
| Time range | -0.199 – 0.500 s | |
| Baseline | -0.199 – 0.000 s | |
| Sampling frequency | 512.00 Hz | |
| Time points | 359 | |
| Channels | ||
| EEG | ||
| Head & sensor digitization | 67 points | |
| Filters | ||
| Highpass | 0.30 Hz | |
| Lowpass | 40.00 Hz | |
| Projections | Average EEG reference (on) | |
  """tDCS EEG."""
import numpy as np
import pandas as pd
bids_root = "~/mne_data/ds001810"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds001810"
task = "attentionalblink"
interactive = False
ch_types = ["eeg"]
eeg_template_montage = "biosemi64"
reject = dict(eeg=100e-6)
baseline = (None, 0)
conditions = ["61450", "61511"]
contrasts = [("61450", "61511"), ("letter=='a'", "letter=='b'")]
decode = True
decoding_n_splits = 3  # only for testing, use 5 otherwise
l_freq = 0.3
subjects = ["01"]
sessions = "all"
interpolate_bads_grand_average = False
n_jobs = 4
epochs_custom_metadata = {
    "ses-anodalpost": pd.DataFrame(
        {
            "ones": np.ones(253),
            "letter": ["a" for x in range(150)] + ["b" for x in range(103)],
        }
    ),
    "ses-anodalpre": pd.DataFrame(
        {
            "ones": np.ones(268),
            "letter": ["a" for x in range(150)] + ["b" for x in range(118)],
        }
    ),
    "ses-anodaltDCS": pd.DataFrame(
        {
            "ones": np.ones(269),
            "letter": ["a" for x in range(150)] + ["b" for x in range(119)],
        }
    ),
    "ses-cathodalpost": pd.DataFrame(
        {
            "ones": np.ones(290),
            "letter": ["a" for x in range(150)] + ["b" for x in range(140)],
        }
    ),
    "ses-cathodalpre": pd.DataFrame(
        {
            "ones": np.ones(267),
            "letter": ["a" for x in range(150)] + ["b" for x in range(117)],
        }
    ),
    "ses-cathodaltDCS": pd.DataFrame(
        {
            "ones": np.ones(297),
            "letter": ["a" for x in range(150)] + ["b" for x in range(147)],
        }
    ),
}  # number of rows are hand-set
    
  Platform             Linux-6.8.0-1039-aws-x86_64-with-glibc2.35
Python               3.12.4 (main, Jun  8 2024, 23:40:19) [GCC 11.4.0]
Executable           /home/circleci/.pyenv/versions/3.12.4/bin/python3.12
CPU                  Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (36 cores)
Memory               8.0 GiB
Core
├☑ mne               1.11.0.dev90+ge50d56542 (development, latest release is 1.10.2)
├☑ numpy             2.3.4 (OpenBLAS 0.3.30 with 1 thread)
├☑ scipy             1.16.2
└☑ matplotlib        3.10.7 (backend=agg)
Numerical (optional)
├☑ sklearn           1.7.2
├☑ numba             0.62.1
├☑ nibabel           5.3.2
├☑ pandas            2.3.3
├☑ h5io              0.2.5
├☑ h5py              3.15.1
└☐ unavailable       nilearn, dipy, openmeeg, cupy
Visualization (optional)
├☑ pyvista           0.46.3 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.3 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.3
├☑ vtk               9.5.2
├☑ qtpy              2.4.3 (PyQt6=6.10.0)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids          0.18.0.dev23+g982570293
├☑ mne-bids-pipeline 1.10.0.dev113+gfd73224c5
├☑ eeglabio          0.1.2
├☑ edfio             0.4.10
├☑ pybv              0.7.6
├☑ defusedxml        0.7.1
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, mffpy, antio