General
Filename(s) sub-01_ses-meg_task-facerecognition_run-01_meg.fif
MNE object type Raw
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1100.00 Hz
Time points 330,001
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 356.40 Hz
Projections mag_ssp_upright.fif : PCA-mags-v1 (off)
mag_ssp_upright.fif : PCA-mags-v2 (off)
mag_ssp_upright.fif : PCA-mags-v3 (off)
mag_ssp_upright.fif : PCA-mags-v4 (off)
mag_ssp_upright.fif : PCA-mags-v5 (off)
grad_ssp_upright.fif : PCA-grad-v1 (off)
grad_ssp_upright.fif : PCA-grad-v2 (off)
grad_ssp_upright.fif : PCA-grad-v3 (off)
PSD
General
Filename(s) sub-01_ses-meg_task-facerecognition_run-02_meg.fif
MNE object type Raw
Measurement date 2009-04-09 at 12:17:17 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1100.00 Hz
Time points 330,001
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 356.40 Hz
Projections mag_ssp_upright.fif : PCA-mags-v1 (off)
mag_ssp_upright.fif : PCA-mags-v2 (off)
mag_ssp_upright.fif : PCA-mags-v3 (off)
mag_ssp_upright.fif : PCA-mags-v4 (off)
mag_ssp_upright.fif : PCA-mags-v5 (off)
grad_ssp_upright.fif : PCA-grad-v1 (off)
grad_ssp_upright.fif : PCA-grad-v2 (off)
grad_ssp_upright.fif : PCA-grad-v3 (off)
PSD
General
Filename(s) sub-emptyroom_ses-20090409_task-noise_meg.fif
MNE object type Raw
Measurement date 2009-04-09 at 11:05:49 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:00:60 (HH:MM:SS)
Sampling frequency 1000.00 Hz
Time points 60,000
Channels
Magnetometers
Gradiometers
misc
Stimulus
Head & sensor digitization 62 points
Filters
Highpass 0.03 Hz
Lowpass 330.00 Hz
Projections mag_ssp_upright.fif : PCA-mags-v1 (off)
mag_ssp_upright.fif : PCA-mags-v2 (off)
mag_ssp_upright.fif : PCA-mags-v3 (off)
mag_ssp_upright.fif : PCA-mags-v4 (off)
mag_ssp_upright.fif : PCA-mags-v5 (off)
grad_ssp_upright.fif : PCA-grad-v1 (off)
grad_ssp_upright.fif : PCA-grad-v2 (off)
grad_ssp_upright.fif : PCA-grad-v3 (off)
PSD
General
Filename(s) sub-01_ses-meg_task-facerecognition_run-01_meg.fif
MNE object type Raw
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1100.00 Hz
Time points 330,001
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 356.40 Hz
PSD
General
Filename(s) sub-01_ses-meg_task-facerecognition_run-02_meg.fif
MNE object type Raw
Measurement date 2009-04-09 at 12:17:17 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1100.00 Hz
Time points 330,001
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 356.40 Hz
PSD
General
Filename(s) sub-emptyroom_ses-20090409_task-noise_meg.fif
MNE object type Raw
Measurement date 2009-04-09 at 11:05:49 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:00:60 (HH:MM:SS)
Sampling frequency 1000.00 Hz
Time points 60,000
Channels
Magnetometers
Gradiometers
misc
Stimulus
Head & sensor digitization 62 points
Filters
Highpass 0.03 Hz
Lowpass 330.00 Hz
PSD
General
Filename(s) sub-01_ses-meg_task-facerecognition_run-01_proc-sss_raw.fif
MNE object type Raw
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Duration 00:04:60 (HH:MM:SS)
Sampling frequency 125.00 Hz
Time points 37,500
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
PSD
General
Filename(s) sub-01_ses-meg_task-facerecognition_run-02_proc-sss_raw.fif
MNE object type Raw
Measurement date 2009-04-09 at 12:17:17 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Duration 00:04:60 (HH:MM:SS)
Sampling frequency 125.00 Hz
Time points 37,500
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
PSD
General
Filename(s) sub-01_ses-meg_task-noise_proc-sss_raw.fif
MNE object type Raw
Measurement date 2009-04-09 at 11:05:49 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:00:60 (HH:MM:SS)
Sampling frequency 125.00 Hz
Time points 7,500
Channels
Magnetometers
Gradiometers
misc
Stimulus
Head & sensor digitization 62 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
PSD
Events
General
MNE object type EpochsArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Total number of events 175
Events counts Famous: 60
Scrambled: 59
Unfamiliar: 56
Time range -0.200 – 0.496 s
Baseline off
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Epoch # event_name Famous Scrambled Unfamiliar
0 Unfamiliar 0.000
1 Unfamiliar 0.000
2 Unfamiliar 0.000
3 Unfamiliar 0.000
4 Famous 0.000
5 Unfamiliar 0.000
6 Famous 0.000
7 Scrambled 0.000
8 Unfamiliar 0.000
9 Famous 0.000
10 Unfamiliar 0.000
11 Unfamiliar 0.000
12 Unfamiliar 0.000
13 Famous 0.000
14 Famous 0.000
15 Unfamiliar 0.000
16 Scrambled 0.000
17 Scrambled 0.000
18 Famous 0.000
19 Scrambled 0.000
20 Scrambled 0.000
21 Scrambled 0.000
22 Famous 0.000
23 Famous 0.000
24 Famous 0.000
25 Famous 0.000
26 Scrambled 0.000
27 Famous 0.000
28 Unfamiliar 0.000
29 Unfamiliar 0.000
30 Unfamiliar 0.000
31 Scrambled 0.000
32 Famous 0.000
33 Scrambled 0.000
34 Scrambled 0.000
35 Unfamiliar 0.000
36 Unfamiliar 0.000
37 Scrambled 0.000
38 Scrambled 0.000
39 Scrambled 0.000
40 Unfamiliar 0.000
41 Unfamiliar 0.000
42 Unfamiliar 0.000
43 Scrambled 0.000
44 Scrambled 0.000
45 Scrambled 0.000
46 Scrambled 0.000
47 Unfamiliar 0.000
48 Unfamiliar 0.000
49 Famous 0.000
50 Scrambled 0.000
51 Famous 0.000
52 Unfamiliar 0.000
53 Scrambled 0.000
54 Scrambled 0.000
55 Scrambled 0.000
56 Famous 0.000
57 Famous 0.000
58 Famous 0.000
59 Unfamiliar 0.000
60 Unfamiliar 0.000
61 Scrambled 0.000
62 Scrambled 0.000
63 Famous 0.000
64 Unfamiliar 0.000
65 Unfamiliar 0.000
66 Unfamiliar 0.000
67 Famous 0.000
68 Scrambled 0.000
69 Famous 0.000
70 Famous 0.000
71 Famous 0.000
72 Scrambled 0.000
73 Scrambled 0.000
74 Scrambled 0.000
75 Unfamiliar 0.000
76 Famous 0.000
77 Unfamiliar 0.000
78 Unfamiliar 0.000
79 Scrambled 0.000
80 Scrambled 0.000
81 Scrambled 0.000
82 Famous 0.000
83 Famous 0.000
84 Scrambled 0.000
85 Scrambled 0.000
86 Scrambled 0.000
87 Unfamiliar 0.000
88 Scrambled 0.000
89 Famous 0.000
90 Famous 0.000
91 Scrambled 0.000
92 Scrambled 0.000
93 Unfamiliar 0.000
94 Famous 0.000
95 Famous 0.000
96 Scrambled 0.000
97 Unfamiliar 0.000
98 Unfamiliar 0.000
99 Famous 0.000
100 Scrambled 0.000
101 Scrambled 0.000
102 Unfamiliar 0.000
103 Famous 0.000
104 Famous 0.000
105 Famous 0.000
106 Scrambled 0.000
107 Scrambled 0.000
108 Famous 0.000
109 Famous 0.000
110 Unfamiliar 0.000
111 Famous 0.000
112 Scrambled 0.000
113 Scrambled 0.000
114 Famous 0.000
115 Famous 0.000
116 Famous 0.000
117 Unfamiliar 0.000
118 Famous 0.000
119 Famous 0.000
120 Unfamiliar 0.000
121 Unfamiliar 0.000
122 Famous 0.000
123 Unfamiliar 0.000
124 Famous 0.000
125 Unfamiliar 0.000
126 Unfamiliar 0.000
127 Unfamiliar 0.000
128 Scrambled 0.000
129 Scrambled 0.000
130 Famous 0.000
131 Scrambled 0.000
132 Scrambled 0.000
133 Unfamiliar 0.000
134 Famous 0.000
135 Famous 0.000
136 Famous 0.000
137 Famous 0.000
138 Unfamiliar 0.000
139 Scrambled 0.000
140 Scrambled 0.000
141 Famous 0.000
142 Scrambled 0.000
143 Famous 0.000
144 Famous 0.000
145 Famous 0.000
146 Famous 0.000
147 Unfamiliar 0.000
148 Unfamiliar 0.000
149 Unfamiliar 0.000
150 Famous 0.000
151 Scrambled 0.000
152 Scrambled 0.000
153 Scrambled 0.000
154 Unfamiliar 0.000
155 Unfamiliar 0.000
156 Famous 0.000
157 Scrambled 0.000
158 Scrambled 0.000
159 Famous 0.000
160 Unfamiliar 0.000
161 Unfamiliar 0.000
162 Unfamiliar 0.000
163 Unfamiliar 0.000
164 Famous 0.000
165 Famous 0.000
166 Unfamiliar 0.000
167 Famous 0.000
168 Scrambled 0.000
169 Scrambled 0.000
170 Famous 0.000
171 Scrambled 0.000
172 Scrambled 0.000
173 Unfamiliar 0.000
174 Unfamiliar 0.000

175 rows × 5 columns

No epochs exceeded the rejection thresholds. Nothing was dropped.
PSD
PSD calculated from 44 epochs (30.6 s).
{'grad': 4e-10, 'mag': 4e-12}
General
Filename(s) sub-01_ses-meg_task-facerecognition_epo.fif
MNE object type EpochsFIF
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Total number of events 175
Events counts Famous: 60
Scrambled: 59
Unfamiliar: 56
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
EEG
misc
Stimulus
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Epoch # event_name Famous Scrambled Unfamiliar
0 Unfamiliar 0.000
1 Unfamiliar 0.000
2 Unfamiliar 0.000
3 Unfamiliar 0.000
4 Famous 0.000
5 Unfamiliar 0.000
6 Famous 0.000
7 Scrambled 0.000
8 Unfamiliar 0.000
9 Famous 0.000
10 Unfamiliar 0.000
11 Unfamiliar 0.000
12 Unfamiliar 0.000
13 Famous 0.000
14 Famous 0.000
15 Unfamiliar 0.000
16 Scrambled 0.000
17 Scrambled 0.000
18 Famous 0.000
19 Scrambled 0.000
20 Scrambled 0.000
21 Scrambled 0.000
22 Famous 0.000
23 Famous 0.000
24 Famous 0.000
25 Famous 0.000
26 Scrambled 0.000
27 Famous 0.000
28 Unfamiliar 0.000
29 Unfamiliar 0.000
30 Unfamiliar 0.000
31 Scrambled 0.000
32 Famous 0.000
33 Scrambled 0.000
34 Scrambled 0.000
35 Unfamiliar 0.000
36 Unfamiliar 0.000
37 Scrambled 0.000
38 Scrambled 0.000
39 Scrambled 0.000
40 Unfamiliar 0.000
41 Unfamiliar 0.000
42 Unfamiliar 0.000
43 Scrambled 0.000
44 Scrambled 0.000
45 Scrambled 0.000
46 Scrambled 0.000
47 Unfamiliar 0.000
48 Unfamiliar 0.000
49 Famous 0.000
50 Scrambled 0.000
51 Famous 0.000
52 Unfamiliar 0.000
53 Scrambled 0.000
54 Scrambled 0.000
55 Scrambled 0.000
56 Famous 0.000
57 Famous 0.000
58 Famous 0.000
59 Unfamiliar 0.000
60 Unfamiliar 0.000
61 Scrambled 0.000
62 Scrambled 0.000
63 Famous 0.000
64 Unfamiliar 0.000
65 Unfamiliar 0.000
66 Unfamiliar 0.000
67 Famous 0.000
68 Scrambled 0.000
69 Famous 0.000
70 Famous 0.000
71 Famous 0.000
72 Scrambled 0.000
73 Scrambled 0.000
74 Scrambled 0.000
75 Unfamiliar 0.000
76 Famous 0.000
77 Unfamiliar 0.000
78 Unfamiliar 0.000
79 Scrambled 0.000
80 Scrambled 0.000
81 Scrambled 0.000
82 Famous 0.000
83 Famous 0.000
84 Scrambled 0.000
85 Scrambled 0.000
86 Scrambled 0.000
87 Unfamiliar 0.000
88 Scrambled 0.000
89 Famous 0.000
90 Famous 0.000
91 Scrambled 0.000
92 Scrambled 0.000
93 Unfamiliar 0.000
94 Famous 0.000
95 Famous 0.000
96 Scrambled 0.000
97 Unfamiliar 0.000
98 Unfamiliar 0.000
99 Famous 0.000
100 Scrambled 0.000
101 Scrambled 0.000
102 Unfamiliar 0.000
103 Famous 0.000
104 Famous 0.000
105 Famous 0.000
106 Scrambled 0.000
107 Scrambled 0.000
108 Famous 0.000
109 Famous 0.000
110 Unfamiliar 0.000
111 Famous 0.000
112 Scrambled 0.000
113 Scrambled 0.000
114 Famous 0.000
115 Famous 0.000
116 Famous 0.000
117 Unfamiliar 0.000
118 Famous 0.000
119 Famous 0.000
120 Unfamiliar 0.000
121 Unfamiliar 0.000
122 Famous 0.000
123 Unfamiliar 0.000
124 Famous 0.000
125 Unfamiliar 0.000
126 Unfamiliar 0.000
127 Unfamiliar 0.000
128 Scrambled 0.000
129 Scrambled 0.000
130 Famous 0.000
131 Scrambled 0.000
132 Scrambled 0.000
133 Unfamiliar 0.000
134 Famous 0.000
135 Famous 0.000
136 Famous 0.000
137 Famous 0.000
138 Unfamiliar 0.000
139 Scrambled 0.000
140 Scrambled 0.000
141 Famous 0.000
142 Scrambled 0.000
143 Famous 0.000
144 Famous 0.000
145 Famous 0.000
146 Famous 0.000
147 Unfamiliar 0.000
148 Unfamiliar 0.000
149 Unfamiliar 0.000
150 Famous 0.000
151 Scrambled 0.000
152 Scrambled 0.000
153 Scrambled 0.000
154 Unfamiliar 0.000
155 Unfamiliar 0.000
156 Famous 0.000
157 Scrambled 0.000
158 Scrambled 0.000
159 Famous 0.000
160 Unfamiliar 0.000
161 Unfamiliar 0.000
162 Unfamiliar 0.000
163 Unfamiliar 0.000
164 Famous 0.000
165 Famous 0.000
166 Unfamiliar 0.000
167 Famous 0.000
168 Scrambled 0.000
169 Scrambled 0.000
170 Famous 0.000
171 Scrambled 0.000
172 Scrambled 0.000
173 Unfamiliar 0.000
174 Unfamiliar 0.000

175 rows × 5 columns

ERP image (EEG)
No epochs exceeded the rejection thresholds. Nothing was dropped.
PSD
PSD calculated from 44 epochs (30.6 s).
General
MNE object type EvokedArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 60 epochs
Condition Famous
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Global field power
General
MNE object type EvokedArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 56 epochs
Condition Unfamiliar
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
General
MNE object type EvokedArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 59 epochs
Condition Scrambled
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
General
MNE object type EvokedArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 30 epochs
Condition Famous - Scrambled
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
General
MNE object type EvokedArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 29 epochs
Condition Unfamiliar - Scrambled
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
General
MNE object type EvokedArray
Measurement date 2009-04-09 at 12:04:14 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 29 epochs
Condition Famous - Unfamiliar
Time range -0.200 – 0.496 s
Baseline -0.200 – 0.000 s
Sampling frequency 125.00 Hz
Time points 88
Channels
Magnetometers
Gradiometers
Head & sensor digitization 137 points
Filters
Highpass 0.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
Full-epochs decoding
Each black dot represents the single cross-validation score. The red cross is the mean of all 5 cross-validation scores. The dashed line is expected chance performance.
Decoding over time: Famous vs. Scrambled
Time-by-time decoding: 60 × Famous vs. 59 × Scrambled
Time generalization: Famous vs. Scrambled
Time generalization (generalization across time, GAT): each classifier is trained on each time point, and tested on all other time points.
Decoding over time: Unfamiliar vs. Scrambled
Time-by-time decoding: 56 × Unfamiliar vs. 59 × Scrambled
Time generalization: Unfamiliar vs. Scrambled
Time generalization (generalization across time, GAT): each classifier is trained on each time point, and tested on all other time points.
Decoding over time: Famous vs. Unfamiliar
Time-by-time decoding: 60 × Famous vs. 56 × Unfamiliar
Time generalization: Famous vs. Unfamiliar
Time generalization (generalization across time, GAT): each classifier is trained on each time point, and tested on all other time points.
  """Faces dataset."""

bids_root = "~/mne_data/ds000117"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds000117"

task = "facerecognition"
ch_types = ["meg"]
runs = ["01", "02"]
sessions = ["meg"]
subjects = ["01"]

raw_resample_sfreq = 125.0
crop_runs = (0, 300)  # Reduce memory usage on CI system

find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
process_empty_room = True

mf_reference_run = "02"
mf_cal_fname = bids_root + "/derivatives/meg_derivatives/sss_cal.dat"
mf_ctc_fname = bids_root + "/derivatives/meg_derivatives/ct_sparse.fif"

reject = {"grad": 4000e-13, "mag": 4e-12}
conditions = ["Famous", "Unfamiliar", "Scrambled"]
contrasts = [
    ("Famous", "Scrambled"),
    ("Unfamiliar", "Scrambled"),
    ("Famous", "Unfamiliar"),
]

decode = True
decoding_time_generalization = True

run_source_estimation = False

  Platform             Linux-5.15.0-1057-aws-x86_64-with-glibc2.35
Python               3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable           /home/circleci/python_env/bin/python3.10
CPU                  x86_64 (36 cores)
Memory               69.1 GB

Core
├☑ mne               1.8.0.dev79+gcaba81b9f (devel, latest release is 1.7.1)
├☑ numpy             2.0.0 (OpenBLAS 0.3.27 with 2 threads)
├☑ scipy             1.13.1
└☑ matplotlib        3.9.0 (backend=agg)

Numerical (optional)
├☑ sklearn           1.5.0
├☑ numba             0.60.0
├☑ nibabel           5.2.1
├☑ pandas            2.2.2
├☑ h5io              0.2.3
├☑ h5py              3.11.0
└☐ unavailable       nilearn, dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista           0.43.10 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.1
├☑ vtk               9.3.0
├☑ qtpy              2.4.1 (PyQt6=6.7.1)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
├☑ mne-bids          0.16.0.dev3+g0e3cbc66a
├☑ mne-bids-pipeline 1.9.0
├☑ edfio             0.4.2
├☑ pybv              0.7.5
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, eeglabio, mffpy