| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_run-01_meg.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:05:00 (HH:MM:SS) | |
| Sampling frequency | 1100.00 Hz | |
| Time points | 330,001 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 356.40 Hz | |
| Projections |
mag_ssp_upright.fif : PCA-mags-v1 (off)
mag_ssp_upright.fif : PCA-mags-v2 (off) mag_ssp_upright.fif : PCA-mags-v3 (off) mag_ssp_upright.fif : PCA-mags-v4 (off) mag_ssp_upright.fif : PCA-mags-v5 (off) grad_ssp_upright.fif : PCA-grad-v1 (off) grad_ssp_upright.fif : PCA-grad-v2 (off) grad_ssp_upright.fif : PCA-grad-v3 (off) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_run-02_meg.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 12:17:17 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:05:00 (HH:MM:SS) | |
| Sampling frequency | 1100.00 Hz | |
| Time points | 330,001 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 356.40 Hz | |
| Projections |
mag_ssp_upright.fif : PCA-mags-v1 (off)
mag_ssp_upright.fif : PCA-mags-v2 (off) mag_ssp_upright.fif : PCA-mags-v3 (off) mag_ssp_upright.fif : PCA-mags-v4 (off) mag_ssp_upright.fif : PCA-mags-v5 (off) grad_ssp_upright.fif : PCA-grad-v1 (off) grad_ssp_upright.fif : PCA-grad-v2 (off) grad_ssp_upright.fif : PCA-grad-v3 (off) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-emptyroom_ses-20090409_task-noise_meg.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 11:05:49 UTC | |
| Participant | sub-emptyroom | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:00:60 (HH:MM:SS) | |
| Sampling frequency | 1000.00 Hz | |
| Time points | 60,000 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 62 points | |
| Filters | ||
| Highpass | 0.03 Hz | |
| Lowpass | 330.00 Hz | |
| Projections |
mag_ssp_upright.fif : PCA-mags-v1 (off)
mag_ssp_upright.fif : PCA-mags-v2 (off) mag_ssp_upright.fif : PCA-mags-v3 (off) mag_ssp_upright.fif : PCA-mags-v4 (off) mag_ssp_upright.fif : PCA-mags-v5 (off) grad_ssp_upright.fif : PCA-grad-v1 (off) grad_ssp_upright.fif : PCA-grad-v2 (off) grad_ssp_upright.fif : PCA-grad-v3 (off) |
|
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_run-01_meg.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:05:00 (HH:MM:SS) | |
| Sampling frequency | 1100.00 Hz | |
| Time points | 330,001 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 356.40 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_run-02_meg.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 12:17:17 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:05:00 (HH:MM:SS) | |
| Sampling frequency | 1100.00 Hz | |
| Time points | 330,001 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 356.40 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-emptyroom_ses-20090409_task-noise_meg.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 11:05:49 UTC | |
| Participant | sub-emptyroom | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:00:60 (HH:MM:SS) | |
| Sampling frequency | 1000.00 Hz | |
| Time points | 60,000 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 62 points | |
| Filters | ||
| Highpass | 0.03 Hz | |
| Lowpass | 330.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_run-01_proc-sss_raw.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:04:60 (HH:MM:SS) | |
| Sampling frequency | 125.00 Hz | |
| Time points | 37,500 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_run-02_proc-sss_raw.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 12:17:17 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:04:60 (HH:MM:SS) | |
| Sampling frequency | 125.00 Hz | |
| Time points | 37,500 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-noise_proc-sss_raw.fif | |
| MNE object type | Raw | |
| Measurement date | 2009-04-09 at 11:05:49 UTC | |
| Participant | sub-emptyroom | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Duration | 00:00:60 (HH:MM:SS) | |
| Sampling frequency | 125.00 Hz | |
| Time points | 7,500 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 62 points | |
| Filters | ||
| Highpass | 0.03 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| MNE object type | EpochsArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Total number of events | 175 | |
| Events counts |
Famous: 60
Scrambled: 59 Unfamiliar: 56 |
|
| Time range | -0.200 – 0.496 s | |
| Baseline | off | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| Epoch # | event_name | Famous | Scrambled | Unfamiliar | |
|---|---|---|---|---|---|
| 0 | Unfamiliar | 0.000 | |||
| 1 | Unfamiliar | 0.000 | |||
| 2 | Unfamiliar | 0.000 | |||
| 3 | Unfamiliar | 0.000 | |||
| 4 | Famous | 0.000 | |||
| 5 | Unfamiliar | 0.000 | |||
| 6 | Famous | 0.000 | |||
| 7 | Scrambled | 0.000 | |||
| 8 | Unfamiliar | 0.000 | |||
| 9 | Famous | 0.000 | |||
| 10 | Unfamiliar | 0.000 | |||
| 11 | Unfamiliar | 0.000 | |||
| 12 | Unfamiliar | 0.000 | |||
| 13 | Famous | 0.000 | |||
| 14 | Famous | 0.000 | |||
| 15 | Unfamiliar | 0.000 | |||
| 16 | Scrambled | 0.000 | |||
| 17 | Scrambled | 0.000 | |||
| 18 | Famous | 0.000 | |||
| 19 | Scrambled | 0.000 | |||
| 20 | Scrambled | 0.000 | |||
| 21 | Scrambled | 0.000 | |||
| 22 | Famous | 0.000 | |||
| 23 | Famous | 0.000 | |||
| 24 | Famous | 0.000 | |||
| 25 | Famous | 0.000 | |||
| 26 | Scrambled | 0.000 | |||
| 27 | Famous | 0.000 | |||
| 28 | Unfamiliar | 0.000 | |||
| 29 | Unfamiliar | 0.000 | |||
| 30 | Unfamiliar | 0.000 | |||
| 31 | Scrambled | 0.000 | |||
| 32 | Famous | 0.000 | |||
| 33 | Scrambled | 0.000 | |||
| 34 | Scrambled | 0.000 | |||
| 35 | Unfamiliar | 0.000 | |||
| 36 | Unfamiliar | 0.000 | |||
| 37 | Scrambled | 0.000 | |||
| 38 | Scrambled | 0.000 | |||
| 39 | Scrambled | 0.000 | |||
| 40 | Unfamiliar | 0.000 | |||
| 41 | Unfamiliar | 0.000 | |||
| 42 | Unfamiliar | 0.000 | |||
| 43 | Scrambled | 0.000 | |||
| 44 | Scrambled | 0.000 | |||
| 45 | Scrambled | 0.000 | |||
| 46 | Scrambled | 0.000 | |||
| 47 | Unfamiliar | 0.000 | |||
| 48 | Unfamiliar | 0.000 | |||
| 49 | Famous | 0.000 | |||
| 50 | Scrambled | 0.000 | |||
| 51 | Famous | 0.000 | |||
| 52 | Unfamiliar | 0.000 | |||
| 53 | Scrambled | 0.000 | |||
| 54 | Scrambled | 0.000 | |||
| 55 | Scrambled | 0.000 | |||
| 56 | Famous | 0.000 | |||
| 57 | Famous | 0.000 | |||
| 58 | Famous | 0.000 | |||
| 59 | Unfamiliar | 0.000 | |||
| 60 | Unfamiliar | 0.000 | |||
| 61 | Scrambled | 0.000 | |||
| 62 | Scrambled | 0.000 | |||
| 63 | Famous | 0.000 | |||
| 64 | Unfamiliar | 0.000 | |||
| 65 | Unfamiliar | 0.000 | |||
| 66 | Unfamiliar | 0.000 | |||
| 67 | Famous | 0.000 | |||
| 68 | Scrambled | 0.000 | |||
| 69 | Famous | 0.000 | |||
| 70 | Famous | 0.000 | |||
| 71 | Famous | 0.000 | |||
| 72 | Scrambled | 0.000 | |||
| 73 | Scrambled | 0.000 | |||
| 74 | Scrambled | 0.000 | |||
| 75 | Unfamiliar | 0.000 | |||
| 76 | Famous | 0.000 | |||
| 77 | Unfamiliar | 0.000 | |||
| 78 | Unfamiliar | 0.000 | |||
| 79 | Scrambled | 0.000 | |||
| 80 | Scrambled | 0.000 | |||
| 81 | Scrambled | 0.000 | |||
| 82 | Famous | 0.000 | |||
| 83 | Famous | 0.000 | |||
| 84 | Scrambled | 0.000 | |||
| 85 | Scrambled | 0.000 | |||
| 86 | Scrambled | 0.000 | |||
| 87 | Unfamiliar | 0.000 | |||
| 88 | Scrambled | 0.000 | |||
| 89 | Famous | 0.000 | |||
| 90 | Famous | 0.000 | |||
| 91 | Scrambled | 0.000 | |||
| 92 | Scrambled | 0.000 | |||
| 93 | Unfamiliar | 0.000 | |||
| 94 | Famous | 0.000 | |||
| 95 | Famous | 0.000 | |||
| 96 | Scrambled | 0.000 | |||
| 97 | Unfamiliar | 0.000 | |||
| 98 | Unfamiliar | 0.000 | |||
| 99 | Famous | 0.000 | |||
| 100 | Scrambled | 0.000 | |||
| 101 | Scrambled | 0.000 | |||
| 102 | Unfamiliar | 0.000 | |||
| 103 | Famous | 0.000 | |||
| 104 | Famous | 0.000 | |||
| 105 | Famous | 0.000 | |||
| 106 | Scrambled | 0.000 | |||
| 107 | Scrambled | 0.000 | |||
| 108 | Famous | 0.000 | |||
| 109 | Famous | 0.000 | |||
| 110 | Unfamiliar | 0.000 | |||
| 111 | Famous | 0.000 | |||
| 112 | Scrambled | 0.000 | |||
| 113 | Scrambled | 0.000 | |||
| 114 | Famous | 0.000 | |||
| 115 | Famous | 0.000 | |||
| 116 | Famous | 0.000 | |||
| 117 | Unfamiliar | 0.000 | |||
| 118 | Famous | 0.000 | |||
| 119 | Famous | 0.000 | |||
| 120 | Unfamiliar | 0.000 | |||
| 121 | Unfamiliar | 0.000 | |||
| 122 | Famous | 0.000 | |||
| 123 | Unfamiliar | 0.000 | |||
| 124 | Famous | 0.000 | |||
| 125 | Unfamiliar | 0.000 | |||
| 126 | Unfamiliar | 0.000 | |||
| 127 | Unfamiliar | 0.000 | |||
| 128 | Scrambled | 0.000 | |||
| 129 | Scrambled | 0.000 | |||
| 130 | Famous | 0.000 | |||
| 131 | Scrambled | 0.000 | |||
| 132 | Scrambled | 0.000 | |||
| 133 | Unfamiliar | 0.000 | |||
| 134 | Famous | 0.000 | |||
| 135 | Famous | 0.000 | |||
| 136 | Famous | 0.000 | |||
| 137 | Famous | 0.000 | |||
| 138 | Unfamiliar | 0.000 | |||
| 139 | Scrambled | 0.000 | |||
| 140 | Scrambled | 0.000 | |||
| 141 | Famous | 0.000 | |||
| 142 | Scrambled | 0.000 | |||
| 143 | Famous | 0.000 | |||
| 144 | Famous | 0.000 | |||
| 145 | Famous | 0.000 | |||
| 146 | Famous | 0.000 | |||
| 147 | Unfamiliar | 0.000 | |||
| 148 | Unfamiliar | 0.000 | |||
| 149 | Unfamiliar | 0.000 | |||
| 150 | Famous | 0.000 | |||
| 151 | Scrambled | 0.000 | |||
| 152 | Scrambled | 0.000 | |||
| 153 | Scrambled | 0.000 | |||
| 154 | Unfamiliar | 0.000 | |||
| 155 | Unfamiliar | 0.000 | |||
| 156 | Famous | 0.000 | |||
| 157 | Scrambled | 0.000 | |||
| 158 | Scrambled | 0.000 | |||
| 159 | Famous | 0.000 | |||
| 160 | Unfamiliar | 0.000 | |||
| 161 | Unfamiliar | 0.000 | |||
| 162 | Unfamiliar | 0.000 | |||
| 163 | Unfamiliar | 0.000 | |||
| 164 | Famous | 0.000 | |||
| 165 | Famous | 0.000 | |||
| 166 | Unfamiliar | 0.000 | |||
| 167 | Famous | 0.000 | |||
| 168 | Scrambled | 0.000 | |||
| 169 | Scrambled | 0.000 | |||
| 170 | Famous | 0.000 | |||
| 171 | Scrambled | 0.000 | |||
| 172 | Scrambled | 0.000 | |||
| 173 | Unfamiliar | 0.000 | |||
| 174 | Unfamiliar | 0.000 |
175 rows × 5 columns
No epochs exceeded the rejection thresholds. Nothing was dropped.
{'grad': 4e-10, 'mag': 4e-12}
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_epo.fif | |
| MNE object type | EpochsFIF | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Total number of events | 175 | |
| Events counts |
Famous: 60
Scrambled: 59 Unfamiliar: 56 |
|
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| EEG | ||
| misc | ||
| Stimulus | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| Epoch # | event_name | Famous | Scrambled | Unfamiliar | |
|---|---|---|---|---|---|
| 0 | Unfamiliar | 0.000 | |||
| 1 | Unfamiliar | 0.000 | |||
| 2 | Unfamiliar | 0.000 | |||
| 3 | Unfamiliar | 0.000 | |||
| 4 | Famous | 0.000 | |||
| 5 | Unfamiliar | 0.000 | |||
| 6 | Famous | 0.000 | |||
| 7 | Scrambled | 0.000 | |||
| 8 | Unfamiliar | 0.000 | |||
| 9 | Famous | 0.000 | |||
| 10 | Unfamiliar | 0.000 | |||
| 11 | Unfamiliar | 0.000 | |||
| 12 | Unfamiliar | 0.000 | |||
| 13 | Famous | 0.000 | |||
| 14 | Famous | 0.000 | |||
| 15 | Unfamiliar | 0.000 | |||
| 16 | Scrambled | 0.000 | |||
| 17 | Scrambled | 0.000 | |||
| 18 | Famous | 0.000 | |||
| 19 | Scrambled | 0.000 | |||
| 20 | Scrambled | 0.000 | |||
| 21 | Scrambled | 0.000 | |||
| 22 | Famous | 0.000 | |||
| 23 | Famous | 0.000 | |||
| 24 | Famous | 0.000 | |||
| 25 | Famous | 0.000 | |||
| 26 | Scrambled | 0.000 | |||
| 27 | Famous | 0.000 | |||
| 28 | Unfamiliar | 0.000 | |||
| 29 | Unfamiliar | 0.000 | |||
| 30 | Unfamiliar | 0.000 | |||
| 31 | Scrambled | 0.000 | |||
| 32 | Famous | 0.000 | |||
| 33 | Scrambled | 0.000 | |||
| 34 | Scrambled | 0.000 | |||
| 35 | Unfamiliar | 0.000 | |||
| 36 | Unfamiliar | 0.000 | |||
| 37 | Scrambled | 0.000 | |||
| 38 | Scrambled | 0.000 | |||
| 39 | Scrambled | 0.000 | |||
| 40 | Unfamiliar | 0.000 | |||
| 41 | Unfamiliar | 0.000 | |||
| 42 | Unfamiliar | 0.000 | |||
| 43 | Scrambled | 0.000 | |||
| 44 | Scrambled | 0.000 | |||
| 45 | Scrambled | 0.000 | |||
| 46 | Scrambled | 0.000 | |||
| 47 | Unfamiliar | 0.000 | |||
| 48 | Unfamiliar | 0.000 | |||
| 49 | Famous | 0.000 | |||
| 50 | Scrambled | 0.000 | |||
| 51 | Famous | 0.000 | |||
| 52 | Unfamiliar | 0.000 | |||
| 53 | Scrambled | 0.000 | |||
| 54 | Scrambled | 0.000 | |||
| 55 | Scrambled | 0.000 | |||
| 56 | Famous | 0.000 | |||
| 57 | Famous | 0.000 | |||
| 58 | Famous | 0.000 | |||
| 59 | Unfamiliar | 0.000 | |||
| 60 | Unfamiliar | 0.000 | |||
| 61 | Scrambled | 0.000 | |||
| 62 | Scrambled | 0.000 | |||
| 63 | Famous | 0.000 | |||
| 64 | Unfamiliar | 0.000 | |||
| 65 | Unfamiliar | 0.000 | |||
| 66 | Unfamiliar | 0.000 | |||
| 67 | Famous | 0.000 | |||
| 68 | Scrambled | 0.000 | |||
| 69 | Famous | 0.000 | |||
| 70 | Famous | 0.000 | |||
| 71 | Famous | 0.000 | |||
| 72 | Scrambled | 0.000 | |||
| 73 | Scrambled | 0.000 | |||
| 74 | Scrambled | 0.000 | |||
| 75 | Unfamiliar | 0.000 | |||
| 76 | Famous | 0.000 | |||
| 77 | Unfamiliar | 0.000 | |||
| 78 | Unfamiliar | 0.000 | |||
| 79 | Scrambled | 0.000 | |||
| 80 | Scrambled | 0.000 | |||
| 81 | Scrambled | 0.000 | |||
| 82 | Famous | 0.000 | |||
| 83 | Famous | 0.000 | |||
| 84 | Scrambled | 0.000 | |||
| 85 | Scrambled | 0.000 | |||
| 86 | Scrambled | 0.000 | |||
| 87 | Unfamiliar | 0.000 | |||
| 88 | Scrambled | 0.000 | |||
| 89 | Famous | 0.000 | |||
| 90 | Famous | 0.000 | |||
| 91 | Scrambled | 0.000 | |||
| 92 | Scrambled | 0.000 | |||
| 93 | Unfamiliar | 0.000 | |||
| 94 | Famous | 0.000 | |||
| 95 | Famous | 0.000 | |||
| 96 | Scrambled | 0.000 | |||
| 97 | Unfamiliar | 0.000 | |||
| 98 | Unfamiliar | 0.000 | |||
| 99 | Famous | 0.000 | |||
| 100 | Scrambled | 0.000 | |||
| 101 | Scrambled | 0.000 | |||
| 102 | Unfamiliar | 0.000 | |||
| 103 | Famous | 0.000 | |||
| 104 | Famous | 0.000 | |||
| 105 | Famous | 0.000 | |||
| 106 | Scrambled | 0.000 | |||
| 107 | Scrambled | 0.000 | |||
| 108 | Famous | 0.000 | |||
| 109 | Famous | 0.000 | |||
| 110 | Unfamiliar | 0.000 | |||
| 111 | Famous | 0.000 | |||
| 112 | Scrambled | 0.000 | |||
| 113 | Scrambled | 0.000 | |||
| 114 | Famous | 0.000 | |||
| 115 | Famous | 0.000 | |||
| 116 | Famous | 0.000 | |||
| 117 | Unfamiliar | 0.000 | |||
| 118 | Famous | 0.000 | |||
| 119 | Famous | 0.000 | |||
| 120 | Unfamiliar | 0.000 | |||
| 121 | Unfamiliar | 0.000 | |||
| 122 | Famous | 0.000 | |||
| 123 | Unfamiliar | 0.000 | |||
| 124 | Famous | 0.000 | |||
| 125 | Unfamiliar | 0.000 | |||
| 126 | Unfamiliar | 0.000 | |||
| 127 | Unfamiliar | 0.000 | |||
| 128 | Scrambled | 0.000 | |||
| 129 | Scrambled | 0.000 | |||
| 130 | Famous | 0.000 | |||
| 131 | Scrambled | 0.000 | |||
| 132 | Scrambled | 0.000 | |||
| 133 | Unfamiliar | 0.000 | |||
| 134 | Famous | 0.000 | |||
| 135 | Famous | 0.000 | |||
| 136 | Famous | 0.000 | |||
| 137 | Famous | 0.000 | |||
| 138 | Unfamiliar | 0.000 | |||
| 139 | Scrambled | 0.000 | |||
| 140 | Scrambled | 0.000 | |||
| 141 | Famous | 0.000 | |||
| 142 | Scrambled | 0.000 | |||
| 143 | Famous | 0.000 | |||
| 144 | Famous | 0.000 | |||
| 145 | Famous | 0.000 | |||
| 146 | Famous | 0.000 | |||
| 147 | Unfamiliar | 0.000 | |||
| 148 | Unfamiliar | 0.000 | |||
| 149 | Unfamiliar | 0.000 | |||
| 150 | Famous | 0.000 | |||
| 151 | Scrambled | 0.000 | |||
| 152 | Scrambled | 0.000 | |||
| 153 | Scrambled | 0.000 | |||
| 154 | Unfamiliar | 0.000 | |||
| 155 | Unfamiliar | 0.000 | |||
| 156 | Famous | 0.000 | |||
| 157 | Scrambled | 0.000 | |||
| 158 | Scrambled | 0.000 | |||
| 159 | Famous | 0.000 | |||
| 160 | Unfamiliar | 0.000 | |||
| 161 | Unfamiliar | 0.000 | |||
| 162 | Unfamiliar | 0.000 | |||
| 163 | Unfamiliar | 0.000 | |||
| 164 | Famous | 0.000 | |||
| 165 | Famous | 0.000 | |||
| 166 | Unfamiliar | 0.000 | |||
| 167 | Famous | 0.000 | |||
| 168 | Scrambled | 0.000 | |||
| 169 | Scrambled | 0.000 | |||
| 170 | Famous | 0.000 | |||
| 171 | Scrambled | 0.000 | |||
| 172 | Scrambled | 0.000 | |||
| 173 | Unfamiliar | 0.000 | |||
| 174 | Unfamiliar | 0.000 |
175 rows × 5 columns
No epochs exceeded the rejection thresholds. Nothing was dropped.
| General | ||
|---|---|---|
| MNE object type | EvokedArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 60 epochs | |
| Condition | Famous | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| MNE object type | EvokedArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 56 epochs | |
| Condition | Unfamiliar | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| MNE object type | EvokedArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 59 epochs | |
| Condition | Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| MNE object type | EvokedArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 30 epochs | |
| Condition | Famous - Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| MNE object type | EvokedArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 29 epochs | |
| Condition | Unfamiliar - Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| MNE object type | EvokedArray | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 29 epochs | |
| Condition | Famous - Unfamiliar | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
"""Faces dataset."""
bids_root = "~/mne_data/ds000117"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds000117"
task = "facerecognition"
ch_types = ["meg"]
runs = ["01", "02"]
sessions = ["meg"]
subjects = ["01"]
raw_resample_sfreq = 125.0
crop_runs = (0, 300) # Reduce memory usage on CI system
find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
process_empty_room = True
mf_reference_run = "02"
mf_cal_fname = bids_root + "/derivatives/meg_derivatives/sss_cal.dat"
mf_ctc_fname = bids_root + "/derivatives/meg_derivatives/ct_sparse.fif"
reject = {"grad": 4000e-13, "mag": 4e-12}
conditions = ["Famous", "Unfamiliar", "Scrambled"]
contrasts = [
("Famous", "Scrambled"),
("Unfamiliar", "Scrambled"),
("Famous", "Unfamiliar"),
]
decode = True
decoding_time_generalization = True
run_source_estimation = False
Platform Linux-5.15.0-1057-aws-x86_64-with-glibc2.35
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable /home/circleci/python_env/bin/python3.10
CPU x86_64 (36 cores)
Memory 69.1 GB
Core
├☑ mne 1.8.0.dev79+gcaba81b9f (devel, latest release is 1.7.1)
├☑ numpy 2.0.0 (OpenBLAS 0.3.27 with 2 threads)
├☑ scipy 1.13.1
└☑ matplotlib 3.9.0 (backend=agg)
Numerical (optional)
├☑ sklearn 1.5.0
├☑ numba 0.60.0
├☑ nibabel 5.2.1
├☑ pandas 2.2.2
├☑ h5io 0.2.3
├☑ h5py 3.11.0
└☐ unavailable nilearn, dipy, openmeeg, cupy
Visualization (optional)
├☑ pyvista 0.43.10 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt 0.11.1
├☑ vtk 9.3.0
├☑ qtpy 2.4.1 (PyQt6=6.7.1)
└☐ unavailable ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids 0.16.0.dev3+g0e3cbc66a
├☑ mne-bids-pipeline 1.9.0
├☑ edfio 0.4.2
├☑ pybv 0.7.5
└☐ unavailable mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, eeglabio, mffpy