| facerecognition | |||||||
|---|---|---|---|---|---|---|---|
| trial_type | subject | session | run | Famous | Scrambled | Unfamiliar | |
| 01 | meg | 01 | 49 | 50 | 47 | ||
| 01 | meg | 02 | 49 | 50 | 49 | ||
| 01 | meg | 03 | 50 | 50 | 50 | ||
| 01 | meg | 04 | 48 | 49 | 50 | ||
| 01 | meg | 05 | 49 | 49 | 50 | ||
| 01 | meg | 06 | 50 | 49 | 49 | ||
6 rows × 6 columns
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Famous | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Unfamiliar | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Famous - Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Unfamiliar - Scrambled | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
| General | ||
|---|---|---|
| Filename(s) | sub-01_ses-meg_task-facerecognition_ave.fif | |
| MNE object type | Evoked | |
| Measurement date | 2009-04-09 at 12:04:14 UTC | |
| Participant | sub-01 | |
| Experimenter | mne_anonymize | |
| Acquisition | ||
| Aggregation | average of 1 epochs | |
| Condition | Grand average: Famous - Unfamiliar | |
| Time range | -0.200 – 0.496 s | |
| Baseline | -0.200 – 0.000 s | |
| Sampling frequency | 125.00 Hz | |
| Time points | 88 | |
| Channels | ||
| Magnetometers | ||
| Gradiometers | ||
| Head & sensor digitization | 137 points | |
| Filters | ||
| Highpass | 0.00 Hz | |
| Lowpass | 40.00 Hz | |
  """Faces dataset."""
bids_root = "~/mne_data/ds000117"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds000117"
task = "facerecognition"
ch_types = ["meg"]
runs = ["01", "02"]
sessions = ["meg"]
subjects = ["01"]
raw_resample_sfreq = 125.0
crop_runs = (0, 300)  # Reduce memory usage on CI system
find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
process_empty_room = True
mf_reference_run = "02"
mf_cal_fname = bids_root + "/derivatives/meg_derivatives/sss_cal.dat"
mf_ctc_fname = bids_root + "/derivatives/meg_derivatives/ct_sparse.fif"
reject = {"grad": 4000e-13, "mag": 4e-12}
conditions = ["Famous", "Unfamiliar", "Scrambled"]
contrasts = [
    ("Famous", "Scrambled"),
    ("Unfamiliar", "Scrambled"),
    ("Famous", "Unfamiliar"),
]
decode = True
decoding_time_generalization = True
run_source_estimation = False
    
  Platform             Linux-5.15.0-1057-aws-x86_64-with-glibc2.35
Python               3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable           /home/circleci/python_env/bin/python3.10
CPU                  x86_64 (36 cores)
Memory               69.1 GB
Core
├☑ mne               1.8.0.dev79+gcaba81b9f (devel, latest release is 1.7.1)
├☑ numpy             2.0.0 (OpenBLAS 0.3.27 with 2 threads)
├☑ scipy             1.13.1
└☑ matplotlib        3.9.0 (backend=agg)
Numerical (optional)
├☑ sklearn           1.5.0
├☑ numba             0.60.0
├☑ nibabel           5.2.1
├☑ pandas            2.2.2
├☑ h5io              0.2.3
├☑ h5py              3.11.0
└☐ unavailable       nilearn, dipy, openmeeg, cupy
Visualization (optional)
├☑ pyvista           0.43.10 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.1
├☑ vtk               9.3.0
├☑ qtpy              2.4.1 (PyQt6=6.7.1)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify
Ecosystem (optional)
├☑ mne-bids          0.16.0.dev3+g0e3cbc66a
├☑ mne-bids-pipeline 1.9.0
├☑ edfio             0.4.2
├☑ pybv              0.7.5
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, eeglabio, mffpy