attentionalblink
session subject cathodaltDCS
01 1550

1 rows × 2 columns

General
Filename(s) sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif
MNE object type Evoked
Measurement date Unknown
Participant sub-01
Experimenter Unknown
Acquisition
Aggregation average of 1 epochs
Condition Grand average: 61450
Time range -0.199 – 0.500 s
Baseline -0.199 – 0.000 s
Sampling frequency 512.00 Hz
Time points 359
Channels
EEG
Head & sensor digitization 67 points
Filters
Highpass 0.30 Hz
Lowpass 40.00 Hz
Projections Average EEG reference (on)
Time course (EEG)
Global field power
General
Filename(s) sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif
MNE object type Evoked
Measurement date Unknown
Participant sub-01
Experimenter Unknown
Acquisition
Aggregation average of 1 epochs
Condition Grand average: 61511
Time range -0.199 – 0.500 s
Baseline -0.199 – 0.000 s
Sampling frequency 512.00 Hz
Time points 359
Channels
EEG
Head & sensor digitization 67 points
Filters
Highpass 0.30 Hz
Lowpass 40.00 Hz
Projections Average EEG reference (on)
Time course (EEG)
Global field power
General
Filename(s) sub-01_ses-cathodaltDCS_task-attentionalblink_ave.fif
MNE object type Evoked
Measurement date Unknown
Participant sub-01
Experimenter Unknown
Acquisition
Aggregation average of 1 epochs
Condition Grand average: 61450 - 61511
Time range -0.199 – 0.500 s
Baseline -0.199 – 0.000 s
Sampling frequency 512.00 Hz
Time points 359
Channels
EEG
Head & sensor digitization 67 points
Filters
Highpass 0.30 Hz
Lowpass 40.00 Hz
Projections Average EEG reference (on)
Time course (EEG)
Global field power
Full-epochs decoding
Based on N=1 subjects. Each dot represents the mean cross-validation score for a single subject. The dashed line is expected chance performance.
  """tDCS EEG."""

bids_root = "~/mne_data/ds001810"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds001810"

task = "attentionalblink"
interactive = False
ch_types = ["eeg"]
eeg_template_montage = "biosemi64"
reject = dict(eeg=100e-6)
baseline = (None, 0)
conditions = ["61450", "61511"]
contrasts = [("61450", "61511")]
decode = True
decoding_n_splits = 3  # only for testing, use 5 otherwise

l_freq = 0.3

subjects = ["01"]
sessions = "all"

interpolate_bads_grand_average = False
n_jobs = 4

  Platform             Linux-5.15.0-1057-aws-x86_64-with-glibc2.35
Python               3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable           /home/circleci/python_env/bin/python3.10
CPU                  x86_64 (36 cores)
Memory               68.6 GB

Core
├☑ mne               1.8.0.dev79+gcaba81b9f (devel, latest release is 1.7.1)
├☑ numpy             2.0.0 (OpenBLAS 0.3.27 with 1 thread)
├☑ scipy             1.13.1
└☑ matplotlib        3.9.0 (backend=agg)

Numerical (optional)
├☑ sklearn           1.5.0
├☑ numba             0.60.0
├☑ nibabel           5.2.1
├☑ pandas            2.2.2
├☑ h5io              0.2.3
├☑ h5py              3.11.0
└☐ unavailable       nilearn, dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista           0.43.10 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.1
├☑ vtk               9.3.0
├☑ qtpy              2.4.1 (PyQt6=6.7.1)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
├☑ mne-bids          0.16.0.dev3+g0e3cbc66a
├☑ mne-bids-pipeline 1.9.0
├☑ eeglabio          0.0.2-4
├☑ edfio             0.4.2
├☑ pybv              0.7.5
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, mffpy