localizer
trial_type subject coherent/down coherent/up incoherent/down incoherent/up
01 30 30 30 30

1 rows × 5 columns

General
Filename(s) sub-01_task-localizer_ave.fif
MNE object type Evoked
Measurement date 1911-12-07 at 00:00:00 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 1 epochs
Condition Grand average: 0.51 × coherent/down + 0.49 × coherent/up
Time range -0.200 – 1.000 s
Baseline -0.200 – 0.000 s
Sampling frequency 250.00 Hz
Time points 301
Channels
Magnetometers
Gradiometers
Head & sensor digitization 38 points
Filters
Highpass 1.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
General
Filename(s) sub-01_task-localizer_ave.fif
MNE object type Evoked
Measurement date 1911-12-07 at 00:00:00 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 1 epochs
Condition Grand average: 0.54 × incoherent/down + 0.46 × incoherent/up
Time range -0.200 – 1.000 s
Baseline -0.200 – 0.000 s
Sampling frequency 250.00 Hz
Time points 301
Channels
Magnetometers
Gradiometers
Head & sensor digitization 38 points
Filters
Highpass 1.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
General
Filename(s) sub-01_task-localizer_ave.fif
MNE object type Evoked
Measurement date 1911-12-07 at 00:00:00 UTC
Participant sub-01
Experimenter mne_anonymize
Acquisition
Aggregation average of 1 epochs
Condition Grand average: (0.54 × incoherent/down + 0.46 × incoherent/up) - (0.51 × coherent/down + 0.49 × coherent/up)
Time range -0.200 – 1.000 s
Baseline -0.200 – 0.000 s
Sampling frequency 250.00 Hz
Time points 301
Channels
Magnetometers
Gradiometers
Head & sensor digitization 38 points
Filters
Highpass 1.00 Hz
Lowpass 40.00 Hz
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
Full-epochs decoding
Based on N=1 subjects. Each dot represents the mean cross-validation score for a single subject. The dashed line is expected chance performance.
Time generalization: incoherent vs. coherent
Time generalization (generalization across time, GAT): each classifier is trained on each time point, and tested on all other time points. The results were averaged across N=1 subjects.
CSP decoding: incoherent vs. coherent
Mean decoding scores. Error bars represent bootstrapped 95% confidence intervals.
  """hMT+ Localizer."""

bids_root = "~/mne_data/ds003392"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds003392"

subjects = ["01"]

task = "localizer"
# usually a good idea to use True, but we know no bads are detected for this dataset
find_flat_channels_meg = False
find_noisy_channels_meg = False
use_maxwell_filter = True
ch_types = ["meg"]

l_freq = 1.0
h_freq = 40.0
raw_resample_sfreq = 250
crop_runs = (0, 180)

# Artifact correction.
spatial_filter = "ica"
ica_algorithm = "picard-extended_infomax"
ica_max_iterations = 1000
ica_l_freq = 1.0
ica_n_components = 0.99

# Epochs
epochs_tmin = -0.2
epochs_tmax = 1.0
baseline = (None, 0)

# Conditions / events to consider when epoching
conditions = ["coherent", "incoherent"]

# Decoding
decode = True
decoding_time_generalization = True
decoding_time_generalization_decim = 4
contrasts = [("incoherent", "coherent")]
decoding_csp = True
decoding_csp_times = []
decoding_csp_freqs = {
    "alpha": (8, 12),
}

# Noise estimation
noise_cov = "emptyroom"

  Platform             Linux-5.15.0-1057-aws-x86_64-with-glibc2.35
Python               3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable           /home/circleci/python_env/bin/python3.10
CPU                  x86_64 (36 cores)
Memory               68.6 GB

Core
├☑ mne               1.8.0.dev79+gcaba81b9f (devel, latest release is 1.7.1)
├☑ numpy             2.0.0 (OpenBLAS 0.3.27 with 2 threads)
├☑ scipy             1.13.1
└☑ matplotlib        3.9.0 (backend=agg)

Numerical (optional)
├☑ sklearn           1.5.0
├☑ numba             0.60.0
├☑ nibabel           5.2.1
├☑ pandas            2.2.2
├☑ h5io              0.2.3
├☑ h5py              3.11.0
└☐ unavailable       nilearn, dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista           0.43.10 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.1
├☑ vtk               9.3.0
├☑ qtpy              2.4.1 (PyQt6=6.7.1)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
├☑ mne-bids          0.16.0.dev3+g0e3cbc66a
├☑ mne-bids-pipeline 1.9.0
├☑ edfio             0.4.2
├☑ pybv              0.7.5
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, eeglabio, mffpy