General
Filename(s) sub-102_task-amnoise_meg.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 360,001
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 326.40 Hz
Projections mag.fif : PCA-v1 (off)
mag.fif : PCA-v2 (off)
mag.fif : PCA-v3 (off)
mag.fif : PCA-v4 (off)
mag.fif : PCA-v5 (off)
mag.fif : PCA-v6 (off)
mag.fif : PCA-v7 (off)
grad.fif : PCA-v1 (off)
grad.fif : PCA-v2 (off)
grad.fif : PCA-v3 (off)
grad.fif : PCA-v4 (off)
PSD
General
Filename(s) sub-emptyroom_ses-20000101_task-noise_meg.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:02:02 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 146,400
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 326.40 Hz
Projections mag.fif : PCA-v1 (off)
mag.fif : PCA-v2 (off)
mag.fif : PCA-v3 (off)
mag.fif : PCA-v4 (off)
mag.fif : PCA-v5 (off)
mag.fif : PCA-v6 (off)
mag.fif : PCA-v7 (off)
grad.fif : PCA-v1 (off)
grad.fif : PCA-v2 (off)
grad.fif : PCA-v3 (off)
grad.fif : PCA-v4 (off)
PSD
2024-06-22T10:24:26.498618 image/svg+xml Matplotlib v3.9.0, https://matplotlib.org/
2024-06-22T10:24:29.320474 image/svg+xml Matplotlib v3.9.0, https://matplotlib.org/
eSSS projectors
General
Filename(s) sub-102_task-amnoise_meg.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 360,001
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 326.40 Hz
PSD

The raw data were annotated with the following movement-related bad segment annotations:

  • Translation velocity exceeded 0.02 m/s limit for 5.5 s (1.8%)
  • Rotation velocity exceeded 30.0 °/s limit for 4.0 s (1.3%)

General
Filename(s) sub-emptyroom_ses-20000101_task-noise_meg.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:02:02 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 146,400
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 326.40 Hz
PSD

The raw data were annotated with the following movement-related bad segment annotations:

  • Translation velocity exceeded 0.02 m/s limit for 5.5 s (4.5%)
  • Rotation velocity exceeded 30.0 °/s limit for 4.0 s (3.3%)

General
Filename(s) sub-102_task-amnoise_proc-sss_raw.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 360,001
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
PSD
General
Filename(s) sub-102_task-noise_proc-sss_raw.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:02:02 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 146,400
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
PSD
SSP: ECG
Computed using 345 epochs (from 422 original events)
Events
General
MNE object type Epochs
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Total number of events 31
Events counts auditory: 31
Time range -0.200 – 1.000 s
Baseline off
Sampling frequency 200.00 Hz
Time points 241
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
Epoch # event_name auditory
0 auditory 0.000
1 auditory 0.000
2 auditory 0.000
3 auditory 0.000
4 auditory 0.000
5 auditory 0.000
6 auditory 0.000
7 auditory 0.000
9 auditory 0.000
10 auditory 0.000
11 auditory 0.000
12 auditory 0.000
13 auditory 0.000
14 auditory 0.000
15 auditory 0.000
16 auditory 0.000
17 auditory 0.000
18 auditory 0.000
19 auditory 0.000
20 auditory 0.000
21 auditory 0.000
22 auditory 0.000
23 auditory 0.000
24 auditory 0.000
25 auditory 0.000
26 auditory 0.000
27 auditory 0.000
28 auditory 0.000
29 auditory 0.000
30 auditory 0.000
31 auditory 0.000

31 rows × 3 columns

Drop log
PSD
PSD calculated from 25 epochs (30.0 s).
General
Filename(s) sub-102_task-amnoise_proc-filt_raw.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Duration 00:05:00 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 360,001
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
Projections meg-ECG--0.500-0.500)-PCA-01 (off)
meg-ECG--0.500-0.500)-PCA-02 (off)
PSD
General
Filename(s) sub-102_task-noise_proc-filt_raw.fif
MNE object type Raw
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-emptyroom
Experimenter mne_anonymize
Acquisition
Duration 00:02:02 (HH:MM:SS)
Sampling frequency 1200.00 Hz
Time points 146,400
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
Projections meg-ECG--0.500-0.500)-PCA-01 (off)
meg-ECG--0.500-0.500)-PCA-02 (off)
PSD
{'grad': 2e-10, 'mag': 5e-12}
General
Filename(s) sub-102_task-amnoise_proc-ssp_epo.fif
MNE object type EpochsFIF
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Total number of events 29
Events counts auditory: 29
Time range -0.200 – 1.000 s
Baseline -0.200 – 0.000 s
Sampling frequency 200.00 Hz
Time points 241
Channels
Magnetometers
Gradiometers
EOG
ECG
misc
Stimulus
Continuous head position indicator (HPI) coil channels
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
Projections meg-ECG--0.500-0.500)-PCA-01 (on)
meg-ECG--0.500-0.500)-PCA-02 (on)
Epoch # event_name auditory
0 auditory 0.000
1 auditory 0.000
2 auditory 0.000
3 auditory 0.000
5 auditory 0.000
6 auditory 0.000
7 auditory 0.000
10 auditory 0.000
11 auditory 0.000
12 auditory 0.000
13 auditory 0.000
14 auditory 0.000
15 auditory 0.000
16 auditory 0.000
17 auditory 0.000
18 auditory 0.000
19 auditory 0.000
20 auditory 0.000
21 auditory 0.000
22 auditory 0.000
23 auditory 0.000
24 auditory 0.000
25 auditory 0.000
26 auditory 0.000
27 auditory 0.000
28 auditory 0.000
29 auditory 0.000
30 auditory 0.000
31 auditory 0.000

29 rows × 3 columns

Drop log
PSD
PSD calculated from 25 epochs (30.0 s).
General
MNE object type EvokedArray
Measurement date 2000-01-01 at 00:00:00 UTC
Participant sub-102
Experimenter mne_anonymize
Acquisition
Aggregation average of 29 epochs
Condition auditory
Time range -0.200 – 1.000 s
Baseline -0.200 – 0.000 s
Sampling frequency 200.00 Hz
Time points 241
Channels
Magnetometers
Gradiometers
Head & sensor digitization 167 points
Filters
Highpass 0.03 Hz
Lowpass 40.00 Hz
Projections meg-ECG--0.500-0.500)-PCA-01 (on)
meg-ECG--0.500-0.500)-PCA-02 (on)
Time course (Magnetometers)
Time course (Gradiometers)
Global field power
Covariance matrix
Singular values
Whitening: auditory
  """Single-subject infant dataset for testing maxwell_filter with movecomp.

https://openneuro.org/datasets/ds004229
"""

import mne
import numpy as np

bids_root = "~/mne_data/ds004229"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds004229"

task = "amnoise"
crop_runs = (300.0, 600.0)  # 5 minutes from the middle of the recording for speed

find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
mf_destination = mne.transforms.translation(  # rotate backward and move up
    z=0.055,
) @ mne.transforms.rotation(x=np.deg2rad(-15))
mf_mc = True
mf_st_duration = 10
mf_int_order = 6  # lower for smaller heads
mf_mc_t_step_min = 0.5  # just for speed!
mf_mc_t_window = 0.2  # cleaner cHPI filtering on this dataset
mf_filter_chpi = False  # for speed, not needed as we low-pass anyway
mf_mc_rotation_velocity_limit = 30.0  # deg/s for annotations
mf_mc_translation_velocity_limit = 20e-3  # m/s
mf_esss = 8
mf_esss_reject = {"grad": 10000e-13, "mag": 40000e-15}
ch_types = ["meg"]

l_freq = None
h_freq = 40.0

# SSP and peak-to-peak rejection
spatial_filter = "ssp"
n_proj_eog = dict(n_mag=0, n_grad=0)
n_proj_ecg = dict(n_mag=2, n_grad=2)
ssp_ecg_channel = "MEG0113"  # ECG channel is not hooked up in this dataset
reject = ssp_reject_ecg = {"grad": 2000e-13, "mag": 5000e-15}

# Epochs
epochs_tmin = -0.2
epochs_tmax = 1
epochs_decim = 6  # 1200->200 Hz
baseline = (None, 0)
report_add_epochs_image_kwargs = {
    "grad": {"vmin": 0, "vmax": 1e13 * reject["grad"]},  # fT/cm
    "mag": {"vmin": 0, "vmax": 1e15 * reject["mag"]},  # fT
}

# Conditions / events to consider when epoching
conditions = ["auditory"]

# Decoding
decode = False

# Noise estimation
noise_cov = "emptyroom"

  Platform             Linux-5.15.0-1057-aws-x86_64-with-glibc2.35
Python               3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
Executable           /home/circleci/python_env/bin/python3.10
CPU                  x86_64 (36 cores)
Memory               68.6 GB

Core
├☑ mne               1.8.0.dev79+gcaba81b9f (devel, latest release is 1.7.1)
├☑ numpy             2.0.0 (OpenBLAS 0.3.27 with 2 threads)
├☑ scipy             1.13.1
└☑ matplotlib        3.9.0 (backend=agg)

Numerical (optional)
├☑ sklearn           1.5.0
├☑ numba             0.60.0
├☑ nibabel           5.2.1
├☑ pandas            2.2.2
├☑ h5io              0.2.3
├☑ h5py              3.11.0
└☐ unavailable       nilearn, dipy, openmeeg, cupy

Visualization (optional)
├☑ pyvista           0.43.10 (OpenGL 4.5 (Core Profile) Mesa 23.2.1-1ubuntu3.1~22.04.2 via llvmpipe (LLVM 15.0.7, 256 bits))
├☑ pyvistaqt         0.11.1
├☑ vtk               9.3.0
├☑ qtpy              2.4.1 (PyQt6=6.7.1)
└☐ unavailable       ipympl, pyqtgraph, mne-qt-browser, ipywidgets, trame_client, trame_server, trame_vtk, trame_vuetify

Ecosystem (optional)
├☑ mne-bids          0.16.0.dev3+g0e3cbc66a
├☑ mne-bids-pipeline 1.9.0
├☑ edfio             0.4.2
├☑ pybv              0.7.5
└☐ unavailable       mne-nirs, mne-features, mne-connectivity, mne-icalabel, neo, eeglabio, mffpy