The EEG-channel data are averaged for group averages.
import os.path as op
import mne
from library.config import meg_dir, l_freq, exclude_subjects
all_evokeds = [list() for _ in range(7)] # Container for all the categories
for run in range(1, 20):
if run in exclude_subjects:
continue
subject = "sub%03d" % run
print("processing subject: %s" % subject)
data_path = op.join(meg_dir, subject)
evokeds = mne.read_evokeds(
op.join(meg_dir, subject, '%s_highpass-%sHz-ave.fif'
% (subject, l_freq)))
assert len(evokeds) == len(all_evokeds)
for idx, evoked in enumerate(evokeds):
all_evokeds[idx].append(evoked) # Insert to the container
for idx, evokeds in enumerate(all_evokeds):
all_evokeds[idx] = mne.combine_evoked(evokeds, 'equal') # Combine subjects
mne.evoked.write_evokeds(
op.join(meg_dir, 'grand_average_highpass-%sHz-ave.fif' % l_freq),
all_evokeds)
Total running time of the script: ( 0 minutes 0.000 seconds)