Source code for mne_connectivity.spectral.time

# Authors: Adam Li <adam2392@gmail.com>
#          Santeri Ruuskanen <santeriruuskanen@gmail.com>
#
# License: BSD (3-clause)

import numpy as np
import xarray as xr
from mne.epochs import BaseEpochs
from mne.parallel import parallel_func
from mne.time_frequency import (tfr_array_morlet, tfr_array_multitaper,
                                dpss_windows)
from mne.utils import (logger, verbose)

from ..base import (SpectralConnectivity, EpochSpectralConnectivity)
from .epochs import _compute_freq_mask
from .smooth import _create_kernel, _smooth_spectra
from ..utils import check_indices, fill_doc


[docs]@verbose @fill_doc def spectral_connectivity_time(data, freqs, method='coh', average=False, indices=None, sfreq=None, fmin=None, fmax=None, fskip=0, faverage=False, sm_times=0, sm_freqs=1, sm_kernel='hanning', padding=0, mode='cwt_morlet', mt_bandwidth=None, n_cycles=7, decim=1, n_jobs=1, verbose=None): """Compute time-frequency-domain connectivity measures. This function computes spectral connectivity over time from epoched data. The data may consist of a single epoch. The connectivity method(s) are specified using the ``method`` parameter. All methods are based on time-resolved estimates of the cross- and power spectral densities (CSD/PSD) Sxy and Sxx, Syy. Parameters ---------- data : array_like, shape (n_epochs, n_signals, n_times) | Epochs The data from which to compute connectivity. freqs : array_like Array of frequencies of interest for time-frequency decomposition. Only the frequencies within the range specified by ``fmin`` and ``fmax`` are used. method : str | list of str Connectivity measure(s) to compute. These can be ``['coh', 'plv', 'ciplv', 'pli', 'wpli']``. These are: * 'coh' : Coherence * 'plv' : Phase-Locking Value (PLV) * 'ciplv' : Corrected imaginary Phase-Locking Value * 'pli' : Phase-Lag Index * 'wpli' : Weighted Phase-Lag Index average : bool Average connectivity scores over epochs. If ``True``, output will be an instance of :class:`SpectralConnectivity`, otherwise :class:`EpochSpectralConnectivity`. indices : tuple of array_like | None Two arrays with indices of connections for which to compute connectivity. I.e. it is a ``(n_pairs, 2)`` array essentially. If `None`, all connections are computed. sfreq : float The sampling frequency. Required if data is not :class:`Epochs <mne.Epochs>`. fmin : float | tuple of float | None The lower frequency of interest. Multiple bands are defined using a tuple, e.g., ``(8., 20.)`` for two bands with 8 Hz and 20 Hz lower bounds. If `None`, the lowest frequency in ``freqs`` is used. fmax : float | tuple of float | None The upper frequency of interest. Multiple bands are defined using a tuple, e.g. ``(13., 30.)`` for two band with 13 Hz and 30 Hz upper bounds. If `None`, the highest frequency in ``freqs`` is used. fskip : int Omit every ``(fskip + 1)``-th frequency bin to decimate in frequency domain. faverage : bool Average connectivity scores for each frequency band. If `True`, the output ``freqs`` will be an array of the median frequencies of each band. sm_times : float Amount of time to consider for the temporal smoothing in seconds. If zero, no temporal smoothing is applied. sm_freqs : int Number of points for frequency smoothing. By default, 1 is used which is equivalent to no smoothing. sm_kernel : {'square', 'hanning'} Smoothing kernel type. Choose either 'square' or 'hanning'. padding : float Amount of time to consider as padding at the beginning and end of each epoch in seconds. See Notes for more information. mode : str Time-frequency decomposition method. Can be either: 'multitaper', or 'cwt_morlet'. See :func:`mne.time_frequency.tfr_array_multitaper` and :func:`mne.time_frequency.tfr_array_morlet` for reference. mt_bandwidth : float | None Product between the temporal window length (in seconds) and the full frequency bandwidth (in Hz). This product can be seen as the surface of the window on the time/frequency plane and controls the frequency bandwidth (thus the frequency resolution) and the number of good tapers. See :func:`mne.time_frequency.tfr_array_multitaper` documentation. n_cycles : float | array_like of float Number of cycles in the wavelet, either a fixed number or one per frequency. The number of cycles ``n_cycles`` and the frequencies of interest ``cwt_freqs`` define the temporal window length. For details, see :func:`mne.time_frequency.tfr_array_morlet` documentation. decim : int To reduce memory usage, decimation factor after time-frequency decomposition. Returns ``tfr[…, ::decim]``. n_jobs : int Number of connections to compute in parallel. Memory mapping must be activated. Please see the Notes section for details. %(verbose)s Returns ------- con : instance of Connectivity | list Computed connectivity measure(s). An instance of :class:`EpochSpectralConnectivity`, :class:`SpectralConnectivity` or a list of instances corresponding to connectivity measures if several connectivity measures are specified. The shape of each connectivity dataset is (n_epochs, n_signals, n_signals, n_freqs) when ``indices`` is `None` and (n_epochs, n_nodes, n_nodes, n_freqs) when ``indices`` is specified and ``n_nodes = len(indices[0])``. See Also -------- mne_connectivity.spectral_connectivity_epochs mne_connectivity.SpectralConnectivity mne_connectivity.EpochSpectralConnectivity Notes ----- Please note that the interpretation of the measures in this function depends on the data and underlying assumptions and does not necessarily reflect a causal relationship between brain regions. The connectivity measures are computed over time within each epoch and optionally averaged over epochs. High connectivity values indicate that the phase coupling (interpreted as estimated connectivity) differences between signals stay consistent over time. The spectral densities can be estimated using a multitaper method with digital prolate spheroidal sequence (DPSS) windows, or a continuous wavelet transform using Morlet wavelets. The spectral estimation mode is specified using the ``mode`` parameter. When using the multitaper spectral estimation method, the cross-spectral density is computed separately for each taper and aggregated using a weighted average, where the weights correspond to the concentration ratios between the DPSS windows. Spectral estimation using multitaper or Morlet wavelets introduces edge effects that depend on the length of the wavelet. To remove edge effects, the parameter ``padding`` can be used to prune the edges of the signal. Please see the documentation of :func:`mne.time_frequency.tfr_array_multitaper` and :func:`mne.time_frequency.tfr_array_morlet` for details on wavelet length (i.e., time window length). By default, the connectivity between all signals is computed (only connections corresponding to the lower-triangular part of the connectivity matrix). If one is only interested in the connectivity between some signals, the ``indices`` parameter can be used. For example, to compute the connectivity between the signal with index 0 and signals 2, 3, 4 (a total of 3 connections), one can use the following:: indices = (np.array([0, 0, 0]), # row indices np.array([2, 3, 4])) # col indices con = spectral_connectivity_time(data, method='coh', indices=indices, ...) In this case ``con.get_data().shape = (3, n_freqs)``. The connectivity scores are in the same order as defined indices. **Supported Connectivity Measures** The connectivity method(s) is specified using the ``method`` parameter. The following methods are supported (note: ``E[]`` denotes average over epochs). Multiple measures can be computed at once by using a list/tuple, e.g., ``['coh', 'pli']`` to compute coherence and PLI. 'coh' : Coherence given by:: | E[Sxy] | C = --------------------- sqrt(E[Sxx] * E[Syy]) 'plv' : Phase-Locking Value (PLV) :footcite:`LachauxEtAl1999` given by:: PLV = |E[Sxy/|Sxy|]| 'ciplv' : Corrected imaginary PLV (icPLV) :footcite:`BrunaEtAl2018` given by:: |E[Im(Sxy/|Sxy|)]| ciPLV = ------------------------------------ sqrt(1 - |E[real(Sxy/|Sxy|)]| ** 2) 'pli' : Phase Lag Index (PLI) :footcite:`StamEtAl2007` given by:: PLI = |E[sign(Im(Sxy))]| 'wpli' : Weighted Phase Lag Index (WPLI) :footcite:`VinckEtAl2011` given by:: |E[Im(Sxy)]| WPLI = ------------------ E[|Im(Sxy)|] Parallel computation can be activated by setting the ``n_jobs`` parameter. Under the hood, this utilizes the ``joblib`` library. For effective parallelization, you should activate memory mapping in MNE-Python by setting ``MNE_MEMMAP_MIN_SIZE`` and ``MNE_CACHE_DIR``. Activating memory mapping will make ``joblib`` store arrays greater than the minimum size on disc, and forego direct RAM access for more efficient processing. For example, in your code, run mne.set_config('MNE_MEMMAP_MIN_SIZE', '10M') mne.set_config('MNE_CACHE_DIR', '/dev/shm') When ``MNE_MEMMAP_MIN_SIZE=None``, the underlying joblib implementation results in pickling and unpickling the whole array each time a pair of indices is accessed, which is slow, compared to memory mapping the array. This function is based on the ``frites.conn.conn_spec`` implementation in Frites. .. versionadded:: 0.3 References ---------- .. footbibliography:: """ events = None event_id = None # extract data from Epochs object if isinstance(data, BaseEpochs): names = data.ch_names sfreq = data.info['sfreq'] events = data.events event_id = data.event_id n_epochs, n_signals, n_times = data.get_data().shape # Extract metadata from the Epochs data structure. # Make Annotations persist through by adding them to the metadata. metadata = data.metadata if metadata is None: annots_in_metadata = False else: annots_in_metadata = all( name not in metadata.columns for name in [ 'annot_onset', 'annot_duration', 'annot_description']) if hasattr(data, 'annotations') and not annots_in_metadata: data.add_annotations_to_metadata(overwrite=True) metadata = data.metadata data = data.get_data() else: data = np.asarray(data) n_epochs, n_signals, n_times = data.shape names = np.arange(0, n_signals) metadata = None if sfreq is None: raise ValueError('Sampling frequency (sfreq) is required with ' 'array input.') # check that method is a list if isinstance(method, str): method = [method] # defaults for fmin and fmax if fmin is None: fmin = np.min(freqs) logger.info('Fmin was not specified. Using fmin=min(freqs)') if fmax is None: fmax = np.max(freqs) logger.info('Fmax was not specified. Using fmax=max(freqs).') fmin = np.array((fmin,), dtype=float).ravel() fmax = np.array((fmax,), dtype=float).ravel() if len(fmin) != len(fmax): raise ValueError('fmin and fmax must have the same length') if np.any(fmin > fmax): raise ValueError('fmax must be larger than fmin') # convert kernel width in time to samples if isinstance(sm_times, (int, float)): sm_times = int(np.round(sm_times * sfreq)) # convert frequency smoothing from hz to samples if isinstance(sm_freqs, (int, float)): sm_freqs = int(np.round(max(sm_freqs, 1))) # temporal decimation if isinstance(decim, int): sm_times = int(np.round(sm_times / decim)) sm_times = max(sm_times, 1) # Create smoothing kernel kernel = _create_kernel(sm_times, sm_freqs, kernel=sm_kernel) # get indices of pairs of (group) regions if indices is None: indices_use = np.tril_indices(n_signals, k=-1) else: indices_use = check_indices(indices) source_idx = indices_use[0] target_idx = indices_use[1] n_pairs = len(source_idx) # check freqs if isinstance(freqs, (int, float)): freqs = [freqs] # array conversion freqs = np.asarray(freqs) # check order for multiple frequencies if len(freqs) >= 2: delta_f = np.diff(freqs) increase = np.all(delta_f > 0) assert increase, "Frequencies should be in increasing order" # check that freqs corresponds to at least n_cycles cycles dur = float(n_times) / sfreq cycle_freq = n_cycles / dur if np.any(freqs < cycle_freq): raise ValueError('At least one value in n_cycles corresponds to a' 'wavelet longer than the signal. Use less cycles, ' 'higher frequencies, or longer epochs.') # check for Nyquist if np.any(freqs > sfreq / 2): raise ValueError(f'Frequencies {freqs[freqs > sfreq / 2]} Hz are ' f'larger than Nyquist = {sfreq / 2:.2f} Hz') # compute frequency mask based on specified min/max and decimation factor freq_mask = _compute_freq_mask(freqs, fmin, fmax, fskip) # the frequency points where we compute connectivity freqs = freqs[freq_mask] # compute central frequencies _f = xr.DataArray(np.arange(len(freqs)), dims=('freqs',), coords=(freqs,)) foi_s = _f.sel(freqs=fmin, method='nearest').data foi_e = _f.sel(freqs=fmax, method='nearest').data foi_idx = np.c_[foi_s, foi_e] f_vec = freqs[foi_idx].mean(1) if faverage: n_freqs = len(fmin) out_freqs = f_vec else: n_freqs = len(freqs) out_freqs = freqs conn = dict() for m in method: conn[m] = np.zeros((n_epochs, n_pairs, n_freqs)) logger.info('Connectivity computation...') # parameters to pass to the connectivity function call_params = dict( method=method, kernel=kernel, foi_idx=foi_idx, source_idx=source_idx, target_idx=target_idx, mode=mode, sfreq=sfreq, freqs=freqs, faverage=faverage, n_cycles=n_cycles, mt_bandwidth=mt_bandwidth, decim=decim, padding=padding, kw_cwt={}, kw_mt={}, n_jobs=n_jobs, verbose=verbose) for epoch_idx in np.arange(n_epochs): logger.info(f' Processing epoch {epoch_idx+1} / {n_epochs} ...') conn_tr = _spectral_connectivity(data[epoch_idx], **call_params) for m in method: conn[m][epoch_idx] = np.stack(conn_tr[m], axis=0) if indices is None: conn_flat = conn conn = dict() for m in method: this_conn = np.zeros((n_epochs, n_signals, n_signals) + conn_flat[m].shape[2:], dtype=conn_flat[m].dtype) this_conn[:, source_idx, target_idx] = conn_flat[m] this_conn = this_conn.reshape((n_epochs, n_signals ** 2,) + conn_flat[m].shape[2:]) conn[m] = this_conn # create a Connectivity container if average: out = [SpectralConnectivity( conn[m].mean(axis=0), freqs=out_freqs, n_nodes=n_signals, names=names, indices=indices, method=method, spec_method=mode, events=events, event_id=event_id, metadata=metadata) for m in method] else: out = [EpochSpectralConnectivity( conn[m], freqs=out_freqs, n_nodes=n_signals, names=names, indices=indices, method=method, spec_method=mode, events=events, event_id=event_id, metadata=metadata) for m in method] logger.info('[Connectivity computation done]') # return the object instead of list of length one if len(out) == 1: return out[0] else: return out
def _spectral_connectivity(data, method, kernel, foi_idx, source_idx, target_idx, mode, sfreq, freqs, faverage, n_cycles, mt_bandwidth, decim, padding, kw_cwt, kw_mt, n_jobs, verbose): """Estimate time-resolved connectivity for one epoch. Parameters ---------- data : array_like, shape (n_channels, n_times) Time-series data. method : list of str List of connectivity metrics to compute. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. source_idx : array_like, shape (n_pairs,) Defines the signal pairs of interest together with ``target_idx``. target_idx : array_like, shape (n_pairs,) Defines the signal pairs of interest together with ``source_idx``. mode : str Time-frequency transformation method. sfreq : float Sampling frequency. freqs : array_like Array of frequencies of interest for time-frequency decomposition. Only the frequencies within the range specified by ``fmin`` and ``fmax`` are used. faverage : bool Average over frequency bands. n_cycles : float | array_like of float Number of cycles in the wavelet, either a fixed number or one per frequency. mt_bandwidth : float | None Multitaper time-bandwidth. decim : int Decimation factor after time-frequency decomposition. padding : float Amount of time to consider as padding at the beginning and end of each epoch in seconds. Returns ------- this_conn : list of array List of connectivity estimates corresponding to the metrics in ``method``. Each element is an array of shape (n_pairs, n_freqs) or (n_pairs, n_fbands) if ``faverage`` is `True`. """ n_pairs = len(source_idx) data = np.expand_dims(data, axis=0) if mode == 'cwt_morlet': out = tfr_array_morlet( data, sfreq, freqs, n_cycles=n_cycles, output='complex', decim=decim, n_jobs=n_jobs, **kw_cwt) out = np.expand_dims(out, axis=2) # same dims with multitaper weights = None elif mode == 'multitaper': out = tfr_array_multitaper( data, sfreq, freqs, n_cycles=n_cycles, time_bandwidth=mt_bandwidth, output='complex', decim=decim, n_jobs=n_jobs, **kw_mt) if isinstance(n_cycles, (int, float)): n_cycles = [n_cycles] * len(freqs) mt_bandwidth = mt_bandwidth if mt_bandwidth else 4 n_tapers = int(np.floor(mt_bandwidth - 1)) weights = np.zeros((n_tapers, len(freqs), out.shape[-1])) for i, (f, n_c) in enumerate(zip(freqs, n_cycles)): window_length = np.arange(0., n_c / float(f), 1.0 / sfreq).shape[0] half_nbw = mt_bandwidth / 2. n_tapers = int(np.floor(mt_bandwidth - 1)) _, eigvals = dpss_windows(window_length, half_nbw, n_tapers, sym=False) weights[:, i, :] = np.sqrt(eigvals[:, np.newaxis]) # weights have shape (n_tapers, n_freqs, n_times) else: raise ValueError("Mode must be 'cwt_morlet' or 'multitaper'.") out = np.squeeze(out, axis=0) if padding: if padding < 0: raise ValueError(f'Padding cannot be negative, got {padding}.') if padding >= data.shape[-1] / sfreq / 2: raise ValueError(f'Padding cannot be larger than half of data ' f'length, got {padding}.') pad_idx = int(np.floor(padding * sfreq / decim)) out = out[..., pad_idx:-pad_idx] weights = weights[..., pad_idx:-pad_idx] if weights is not None \ else None # compute for each connectivity method this_conn = {} conn = _parallel_con(out, method, kernel, foi_idx, source_idx, target_idx, n_jobs, verbose, n_pairs, faverage, weights) for i, m in enumerate(method): this_conn[m] = [out[i] for out in conn] return this_conn ############################################################################### ############################################################################### # TIME-RESOLVED CORE FUNCTIONS ############################################################################### ############################################################################### def _parallel_con(w, method, kernel, foi_idx, source_idx, target_idx, n_jobs, verbose, total, faverage, weights): """Compute spectral connectivity in parallel. Parameters ---------- w : array_like, shape (n_chans, n_tapers, n_freqs, n_times) Time-frequency data (complex signal). method : list of str List of connectivity metrics to compute. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. source_idx : array_like, shape (n_pairs,) Defines the signal pairs of interest together with ``target_idx``. target_idx : array_like, shape (n_pairs,) Defines the signal pairs of interest together with ``source_idx``. n_jobs : int Number of parallel jobs. total : int Number of pairs of signals. faverage : bool Average over frequency bands. weights : array_like, shape (n_tapers, n_freqs, n_times) Multitaper weights. Returns ------- out : array_like, shape (n_pairs, n_methods, n_freqs_out) Connectivity estimates for each signal pair, method, and frequency or frequency band. """ if 'coh' in method: # psd if weights is not None: psd = weights * w psd = psd * np.conj(psd) psd = psd.real.sum(axis=1) psd = psd * 2 / (weights * weights.conj()).real.sum(axis=0) else: psd = w.real ** 2 + w.imag ** 2 psd = np.squeeze(psd, axis=1) # smooth psd = _smooth_spectra(psd, kernel) else: psd = None # only show progress if verbosity level is DEBUG if verbose != 'DEBUG' and verbose != 'debug' and verbose != 10: total = None # define the function to compute in parallel parallel, my_pairwise_con, n_jobs = parallel_func( _pairwise_con, n_jobs=n_jobs, verbose=verbose, total=total) return parallel( my_pairwise_con(w, psd, s, t, method, kernel, foi_idx, faverage, weights) for s, t in zip(source_idx, target_idx)) def _pairwise_con(w, psd, x, y, method, kernel, foi_idx, faverage, weights): """Compute spectral connectivity metrics between two signals. Parameters ---------- w : array_like, shape (n_chans, n_tapers, n_freqs, n_times) Time-frequency data. psd : array_like, shape (n_chans, n_freqs, n_times) Power spectrum between signals ``x`` and ``y``. x : int Channel index. y : int Channel index. method : str Connectivity method. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. faverage : bool Average over frequency bands. weights : array_like, shape (n_tapers, n_freqs, n_times) | None Multitaper weights. Returns ------- out : list List of connectivity estimates between signals ``x`` and ``y`` corresponding to the methods in ``method``. Each element is an array with shape (n_freqs,) or (n_fbands) depending on ``faverage``. """ w_x, w_y = w[x], w[y] if weights is not None: s_xy = np.sum(weights * w_x * np.conj(weights * w_y), axis=0) s_xy = s_xy * 2 / (weights * np.conj(weights)).real.sum(axis=0) else: s_xy = w_x * np.conj(w_y) s_xy = np.squeeze(s_xy, axis=0) s_xy = _smooth_spectra(s_xy, kernel) out = [] conn_func = {'plv': _plv, 'ciplv': _ciplv, 'pli': _pli, 'wpli': _wpli, 'coh': _coh} for m in method: if m == 'coh': s_xx = psd[x] s_yy = psd[y] out.append(conn_func[m](s_xx, s_yy, s_xy)) else: out.append(conn_func[m](s_xy)) for i, _ in enumerate(out): # mean inside frequency sliding window (if needed) if isinstance(foi_idx, np.ndarray) and faverage: out[i] = _foi_average(out[i], foi_idx) # squeeze time dimension out[i] = out[i].squeeze(axis=-1) return out def _plv(s_xy): s_xy = s_xy / np.abs(s_xy) plv = np.abs(s_xy.mean(axis=-1, keepdims=True)) return plv def _ciplv(s_xy): s_xy = s_xy / np.abs(s_xy) rplv = np.abs(np.mean(np.real(s_xy), axis=-1, keepdims=True)) iplv = np.abs(np.mean(np.imag(s_xy), axis=-1, keepdims=True)) ciplv = iplv / (np.sqrt(1 - rplv ** 2)) return ciplv def _pli(s_xy): pli = np.abs(np.mean(np.sign(np.imag(s_xy)), axis=-1, keepdims=True)) return pli def _wpli(s_xy): con_num = np.abs(s_xy.imag.mean(axis=-1, keepdims=True)) con_den = np.mean(np.abs(s_xy.imag), axis=-1, keepdims=True) wpli = con_num / con_den return wpli def _coh(s_xx, s_yy, s_xy): con_num = np.abs(s_xy.mean(axis=-1, keepdims=True)) con_den = np.sqrt(s_xx.mean(axis=-1, keepdims=True) * s_yy.mean(axis=-1, keepdims=True)) coh = con_num / con_den return coh def _compute_csd(x, y, weights): """Compute cross spectral density between signals x and y.""" if weights is not None: s_xy = np.sum(weights * x * np.conj(weights * y), axis=-3) s_xy = s_xy * 2 / (weights * np.conj(weights)).real.sum(axis=-3) else: s_xy = x * np.conj(y) s_xy = np.squeeze(s_xy, axis=-3) return s_xy def _foi_average(conn, foi_idx): """Average inside frequency bands. The frequency dimension should be located at -2. Parameters ---------- conn : array_like, shape (..., n_freqs, n_times) Connectivity estimate array. foi_idx : array_like, shape (n_foi, 2) Upper and lower frequency bounds of each frequency band. Returns ------- conn_f : np.ndarray, shape (..., n_fbands, n_times) Connectivity estimate array, averaged within frequency bands. """ # get the number of foi n_foi = foi_idx.shape[0] # get input shape and replace n_freqs with the number of foi sh = list(conn.shape) sh[-2] = n_foi # compute average conn_f = np.zeros(sh, dtype=conn.dtype) for n_f, (f_s, f_e) in enumerate(foi_idx): f_e += 1 if f_s == f_e else f_e conn_f[..., n_f, :] = conn[..., f_s:f_e, :].mean(-2) return conn_f