Note
Click here to download the full example code
The example shows how user-defined feature functions can be used in MNE-Features along with built-in feature functions.
The code for this example is based on the method proposed in:
Jean-Baptiste SCHIRATTI, Jean-Eudes LE DOUGET, Michel LE VAN QUYEN, Slim ESSID, Alexandre GRAMFORT, “An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings” Proc. IEEE ICASSP Conf. 2018
Note
This example is for illustration purposes, as other methods may lead to better performance on such a dataset (classification of auditory vs. visual stimuli).
# Author: Jean-Baptiste Schiratti <jean.baptiste.schiratti@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause
from scipy.signal import medfilt
import mne
from mne.datasets import sample
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import (train_test_split, StratifiedKFold)
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from mne_features.feature_extraction import FeatureExtractor
print(__doc__)
Let us import the data using MNE-Python and epoch it:
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
tmin, tmax = -0.2, 0.5
event_id = dict(aud_l=1, vis_l=3)
# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.filter(.5, None, fir_design='firwin')
events = mne.read_events(event_fname)
picks = mne.pick_types(raw.info, meg=False, eeg=True)
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, proj=True,
baseline=None, preload=True)
labels = epochs.events[:, -1]
# get MEG and EEG data
data = epochs.get_data()
compute_medfilt
¶Here, the raw data is median filtered and the output signals are used as features.
def compute_medfilt(arr):
"""Median filtered signal as features.
Parameters
----------
arr : ndarray, shape (n_channels, n_times)
Returns
-------
output : (n_channels * n_times,)
"""
return medfilt(arr, kernel_size=(1, 5)).ravel()
In addition to the new feature function, we also propose to extract the mean of the data:
selected_funcs = [('medfilt', compute_medfilt), 'mean']
pipe = Pipeline([('fe', FeatureExtractor(sfreq=raw.info['sfreq'],
selected_funcs=selected_funcs)),
('scaler', StandardScaler()),
('clf', LogisticRegression(random_state=42, solver='lbfgs'))])
skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)
y = labels
Print the accuracy score on a test dataset.
Out:
Accuracy score = 0.897
Total running time of the script: ( 0 minutes 1.032 seconds)