mne_features.univariate.compute_teager_kaiser_energy

mne_features.univariate.compute_teager_kaiser_energy(data, wavelet_name='db4')

Compute the Teager-Kaiser energy.

Parameters
datandarray, shape (n_channels, n_times)
wavelet_namestr (default: ‘db4’)

Wavelet name (to be used with pywt.Wavelet). The full list of Wavelet names are given by: [name for family in pywt.families() for name in pywt.wavelist(family)].

Returns
outputndarray, shape (n_channels * (levdec + 1) * 2,)

Notes

Alias of the feature function: teager_kaiser_energy. See [1].

References

1

Badani, S. et al. (2017). Detection of epilepsy based on discrete wavelet transform and Teager-Kaiser energy operator. In Calcutta Conference (CALCON). 2017 IEEE (pp. 164-167).

Fork me on GitHub