Tutorial# Detectors# This tutorial presents several HFO detectors: the Line Length detector, Root Mean Squared Detector. Tutorial on Computing HFOs (Part 1) 1 Simulated Data 1.1 Simulate the HFO data 1.1.1 Create and plot the simulated HFOs 1.1.2 Add other “simulated” EEG data 1.1.3 Combine the simulated data with sample data 1.2 Detect the HFOs 1.2.1 Line Length Detector 1.2.2 Check Results 1.2.3 Repeat for RMS Detector 1.2.4 Repeat for the fast ripple dataset 1.2.5 More complex Example Tutorial on Computing HFOs (Part 2) Dataset Preprocessing References 1 Working with Real Data 1.1 Load in Real Data 1.1.1 Define dataset paths and load the data 1.1.2 Convert to bipolar referencing scheme 1.1.3 Load Annotated HFOs 1.2 Detect HFOs 1.2.1 Line Length Detector 1.2.2 RMS Detector 1.3 Compare Results 1.3.1 Find matches 2 Optimizing the Detectors 2.1 Set up the data 2.2 Set up the GridSearchCV function 2.3 Perform the Search and Print Output Tutorial on Computing HFOs (Part 3) Dataset Preprocessing References 1 Working with Real Data 1.1 Load in Real Data 1.2 Perform pre-processing steps 1.3 Perform Detection with Both Detectors 2 Compare detections 2.1 Perform the comparisons 2.2 Visualize the comparisons 2.1.1 Extract the right values 2.1.2 Visualize the mutual info 2.1.3 Visualize the Kappa score Hilbert Detector