Source code for mne.preprocessing.nirs._beer_lambert_law

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import os.path as op

import numpy as np
from scipy.interpolate import interp1d
from scipy.io import loadmat

from ..._fiff.constants import FIFF
from ...io import BaseRaw
from ...utils import _validate_type, pinv, warn
from ..nirs import _validate_nirs_info, source_detector_distances


[docs] def beer_lambert_law(raw, ppf=6.0): r"""Convert NIRS optical density data to haemoglobin concentration. Parameters ---------- raw : instance of Raw The optical density data. ppf : tuple | float The partial pathlength factors for each wavelength. .. versionchanged:: 1.7 Support for different factors for the two wavelengths. Returns ------- raw : instance of Raw The modified raw instance. """ raw = raw.copy().load_data() _validate_type(raw, BaseRaw, "raw") _validate_type(ppf, ("numeric", "array-like"), "ppf") ppf = np.array(ppf, float) if ppf.ndim == 0: # upcast single float to shape (2,) ppf = np.array([ppf, ppf]) if ppf.shape != (2,): raise ValueError( f"ppf must be float or array-like of shape (2,), got shape {ppf.shape}" ) ppf = ppf[:, np.newaxis] # shape (2, 1) picks = _validate_nirs_info(raw.info, fnirs="od", which="Beer-lambert") # This is the one place we *really* need the actual/accurate frequencies freqs = np.array([raw.info["chs"][pick]["loc"][9] for pick in picks], float) abs_coef = _load_absorption(freqs) distances = source_detector_distances(raw.info, picks="all") bad = ~np.isfinite(distances[picks]) bad |= distances[picks] <= 0 if bad.any(): warn( "Source-detector distances are zero on NaN, some resulting " "concentrations will be zero. Consider setting a montage " "with raw.set_montage." ) distances[picks[bad]] = 0.0 if (distances[picks] > 0.1).any(): warn( "Source-detector distances are greater than 10 cm. " "Large distances will result in invalid data, and are " "likely due to optode locations being stored in a " " unit other than meters." ) rename = dict() for ii, jj in zip(picks[::2], picks[1::2]): EL = abs_coef * distances[ii] * ppf iEL = pinv(EL) raw._data[[ii, jj]] = iEL @ raw._data[[ii, jj]] * 1e-3 # Update channel information coil_dict = dict(hbo=FIFF.FIFFV_COIL_FNIRS_HBO, hbr=FIFF.FIFFV_COIL_FNIRS_HBR) for ki, kind in zip((ii, jj), ("hbo", "hbr")): ch = raw.info["chs"][ki] ch.update(coil_type=coil_dict[kind], unit=FIFF.FIFF_UNIT_MOL) new_name = f"{ch['ch_name'].split(' ')[0]} {kind}" rename[ch["ch_name"]] = new_name raw.rename_channels(rename) # Validate the format of data after transformation is valid _validate_nirs_info(raw.info, fnirs="hb") return raw
def _load_absorption(freqs): """Load molar extinction coefficients.""" # Data from https://omlc.org/spectra/hemoglobin/summary.html # The text was copied to a text file. The text before and # after the table was deleted. The the following was run in # matlab # extinct_coef=importdata('extinction_coef.txt') # save('extinction_coef.mat', 'extinct_coef') # # Returns data as [[HbO2(freq1), Hb(freq1)], # [HbO2(freq2), Hb(freq2)]] extinction_fname = op.join( op.dirname(__file__), "..", "..", "data", "extinction_coef.mat" ) a = loadmat(extinction_fname)["extinct_coef"] interp_hbo = interp1d(a[:, 0], a[:, 1], kind="linear") interp_hb = interp1d(a[:, 0], a[:, 2], kind="linear") ext_coef = np.array( [ [interp_hbo(freqs[0]), interp_hb(freqs[0])], [interp_hbo(freqs[1]), interp_hb(freqs[1])], ] ) abs_coef = ext_coef * 0.2303 return abs_coef