Source code for mne.preprocessing.nirs._scalp_coupling_index

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import numpy as np

from ...io import BaseRaw
from ...utils import _validate_type, verbose
from ..nirs import _validate_nirs_info


[docs] @verbose def scalp_coupling_index( raw, l_freq=0.7, h_freq=1.5, l_trans_bandwidth=0.3, h_trans_bandwidth=0.3, verbose=False, ): r"""Calculate scalp coupling index. This function calculates the scalp coupling index :footcite:`pollonini2014auditory`. This is a measure of the quality of the connection between the optode and the scalp. Parameters ---------- raw : instance of Raw The raw data. %(l_freq)s %(h_freq)s %(l_trans_bandwidth)s %(h_trans_bandwidth)s %(verbose)s Returns ------- sci : array of float Array containing scalp coupling index for each channel. References ---------- .. footbibliography:: """ _validate_type(raw, BaseRaw, "raw") picks = _validate_nirs_info(raw.info, fnirs="od", which="Scalp coupling index") raw = raw.copy().pick(picks).load_data() zero_mask = np.std(raw._data, axis=-1) == 0 filtered_data = raw.filter( l_freq, h_freq, l_trans_bandwidth=l_trans_bandwidth, h_trans_bandwidth=h_trans_bandwidth, verbose=verbose, ).get_data() sci = np.zeros(picks.shape) for ii in range(0, len(picks), 2): with np.errstate(invalid="ignore"): c = np.corrcoef(filtered_data[ii], filtered_data[ii + 1])[0][1] if not np.isfinite(c): # someone had std=0 c = 0 sci[ii] = c sci[ii + 1] = c sci[zero_mask] = 0 sci = sci[np.argsort(picks)] # restore original order return sci