Source code for mne.preprocessing.nirs._scalp_coupling_index
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from ...io import BaseRaw
from ...utils import _validate_type, verbose
from ..nirs import _channel_frequencies, _validate_nirs_info
[docs]
@verbose
def scalp_coupling_index(
raw,
l_freq=0.7,
h_freq=1.5,
l_trans_bandwidth=0.3,
h_trans_bandwidth=0.3,
verbose=False,
):
r"""Calculate scalp coupling index.
This function calculates the scalp coupling index
:footcite:`pollonini2014auditory`. This is a measure of the quality of the
connection between the optode and the scalp.
Parameters
----------
raw : instance of Raw
The raw data.
%(l_freq)s
%(h_freq)s
%(l_trans_bandwidth)s
%(h_trans_bandwidth)s
%(verbose)s
Returns
-------
sci : array of float
Array containing scalp coupling index for each channel.
References
----------
.. footbibliography::
"""
_validate_type(raw, BaseRaw, "raw")
picks = _validate_nirs_info(raw.info, fnirs="od", which="Scalp coupling index")
raw = raw.copy().pick(picks).load_data()
zero_mask = np.std(raw._data, axis=-1) == 0
filtered_data = raw.filter(
l_freq,
h_freq,
l_trans_bandwidth=l_trans_bandwidth,
h_trans_bandwidth=h_trans_bandwidth,
verbose=verbose,
).get_data()
# Determine number of wavelengths per source-detector pair
# We use nominal wavelengths as the info structure may contain arbitrary data.
freqs = _channel_frequencies(raw.info)
n_wavelengths = len(np.unique(freqs))
sci = np.zeros(picks.shape)
# Calculate all pairwise correlations within each group and use the minimum as SCI
pair_indices = np.triu_indices(n_wavelengths, k=1)
for gg in range(0, len(picks), n_wavelengths):
group_data = filtered_data[gg : gg + n_wavelengths]
# Calculate pairwise correlations within the group
correlations = np.zeros(pair_indices[0].shape[0])
for n, (ii, jj) in enumerate(zip(*pair_indices)):
with np.errstate(invalid="ignore"):
c = np.corrcoef(group_data[ii], group_data[jj])[0][1]
if np.isfinite(c):
correlations[n] = c
# Use minimum correlation as SCI
group_sci = correlations.min()
# Assign the same SCI value to all channels in the group
sci[gg : gg + n_wavelengths] = group_sci
sci[zero_mask] = 0
sci = sci[np.argsort(picks)] # restore original order
return sci