Source code for mne.preprocessing.nirs.nirs

# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import re

import numpy as np

from ..._fiff.pick import _picks_to_idx, pick_types
from ...utils import _check_option, _validate_type, fill_doc

# Standardized fNIRS channel name regexs
_S_D_F_RE = re.compile(r"S(\d+)_D(\d+) (\d+\.?\d*)")
_S_D_H_RE = re.compile(r"S(\d+)_D(\d+) (\w+)")


[docs] @fill_doc def source_detector_distances(info, picks=None): r"""Determine the distance between NIRS source and detectors. Parameters ---------- %(info_not_none)s %(picks_all_data)s Returns ------- dists : array of float Array containing distances in meters. Of shape equal to number of channels, or shape of picks if supplied. """ return np.array( [ np.linalg.norm( np.diff(info["chs"][pick]["loc"][3:9].reshape(2, 3), axis=0)[0] ) for pick in _picks_to_idx(info, picks, exclude=[]) ], float, )
[docs] @fill_doc def short_channels(info, threshold=0.01): r"""Determine which NIRS channels are short. Channels with a source to detector distance of less than ``threshold`` are reported as short. The default threshold is 0.01 m. Parameters ---------- %(info_not_none)s threshold : float The threshold distance for what is considered short in meters. Returns ------- short : array of bool Array indicating which channels are short. Of shape equal to number of channels. """ return source_detector_distances(info) < threshold
def _channel_frequencies(info): """Return the light frequency for each channel.""" # Only valid for fNIRS data before conversion to haemoglobin picks = _picks_to_idx( info, ["fnirs_cw_amplitude", "fnirs_od"], exclude=[], allow_empty=True ) freqs = list() for pick in picks: freqs.append(round(float(_S_D_F_RE.match(info["ch_names"][pick]).groups()[2]))) return np.array(freqs, int) def _channel_chromophore(info): """Return the chromophore of each channel.""" # Only valid for fNIRS data after conversion to haemoglobin picks = _picks_to_idx(info, ["hbo", "hbr"], exclude=[], allow_empty=True) chroma = [] for ii in picks: chroma.append(info["ch_names"][ii].split(" ")[1]) return chroma def _check_channels_ordered(info, pair_vals, *, throw_errors=True, check_bads=True): """Check channels follow expected fNIRS format. If the channels are correctly ordered then an array of valid picks will be returned. If throw_errors is True then any errors in fNIRS formatting will be thrown to inform the user. If throw_errors is False then an empty array will be returned if the channels are not sufficiently formatted. """ # Every second channel should be same SD pair # and have the specified light frequencies. # All wavelength based fNIRS data. picks_wave = _picks_to_idx( info, ["fnirs_cw_amplitude", "fnirs_od"], exclude=[], allow_empty=True ) # All chromophore fNIRS data picks_chroma = _picks_to_idx(info, ["hbo", "hbr"], exclude=[], allow_empty=True) if (len(picks_wave) > 0) & (len(picks_chroma) > 0): picks = _throw_or_return_empty( "MNE does not support a combination of amplitude, optical " "density, and haemoglobin data in the same raw structure.", throw_errors, ) # All continuous wave fNIRS data if len(picks_wave): error_word = "frequencies" use_RE = _S_D_F_RE picks = picks_wave else: error_word = "chromophore" use_RE = _S_D_H_RE picks = picks_chroma pair_vals = np.array(pair_vals) if pair_vals.shape != (2,): raise ValueError( f"Exactly two {error_word} must exist in info, got {list(pair_vals)}" ) # In principle we do not need to require that these be sorted -- # all we need to do is change our sorted() below to make use of a # pair_vals.index(...) in a sort key -- but in practice we always want # (hbo, hbr) or (lower_freq, upper_freq) pairings, both of which will # work with a naive string sort, so let's just enforce sorted-ness here is_str = pair_vals.dtype.kind == "U" pair_vals = list(pair_vals) if is_str: if pair_vals != ["hbo", "hbr"]: raise ValueError( f'The {error_word} in info must be ["hbo", "hbr"], but got ' f"{pair_vals} instead" ) elif not np.array_equal(np.unique(pair_vals), pair_vals): raise ValueError( f"The {error_word} in info must be unique and sorted, but got " f"got {pair_vals} instead" ) if len(picks) % 2 != 0: picks = _throw_or_return_empty( "NIRS channels not ordered correctly. An even number of NIRS " f"channels is required. {len(info.ch_names)} channels were" f"provided", throw_errors, ) # Ensure wavelength info exists for waveform data all_freqs = [info["chs"][ii]["loc"][9] for ii in picks_wave] if np.any(np.isnan(all_freqs)): picks = _throw_or_return_empty( f"NIRS channels is missing wavelength information in the " f'info["chs"] structure. The encoded wavelengths are {all_freqs}.', throw_errors, ) # Validate the channel naming scheme for pick in picks: ch_name_info = use_RE.match(info["chs"][pick]["ch_name"]) if not bool(ch_name_info): picks = _throw_or_return_empty( "NIRS channels have specified naming conventions. " "The provided channel name can not be parsed: " f"{repr(info.ch_names[pick])}", throw_errors, ) break value = ch_name_info.groups()[2] if len(picks_wave): value = value else: # picks_chroma if value not in ["hbo", "hbr"]: picks = _throw_or_return_empty( "NIRS channels have specified naming conventions." "Chromophore data must be labeled either hbo or hbr. " f"The failing channel is {info['chs'][pick]['ch_name']}", throw_errors, ) break # Reorder to be paired (naive sort okay here given validation above) picks = picks[np.argsort([info["ch_names"][pick] for pick in picks])] # Validate our paired ordering for ii, jj in zip(picks[::2], picks[1::2]): ch1_name = info["chs"][ii]["ch_name"] ch2_name = info["chs"][jj]["ch_name"] ch1_re = use_RE.match(ch1_name) ch2_re = use_RE.match(ch2_name) ch1_S, ch1_D, ch1_value = ch1_re.groups()[:3] ch2_S, ch2_D, ch2_value = ch2_re.groups()[:3] if len(picks_wave): ch1_value, ch2_value = float(ch1_value), float(ch2_value) if ( (ch1_S != ch2_S) or (ch1_D != ch2_D) or (ch1_value != pair_vals[0]) or (ch2_value != pair_vals[1]) ): picks = _throw_or_return_empty( "NIRS channels not ordered correctly. Channels must be " "ordered as source detector pairs with alternating" f" {error_word} {pair_vals[0]} & {pair_vals[1]}, but got " f"S{ch1_S}_D{ch1_D} pair " f"{repr(ch1_name)} and {repr(ch2_name)}", throw_errors, ) break if check_bads: for ii, jj in zip(picks[::2], picks[1::2]): want = [info.ch_names[ii], info.ch_names[jj]] got = list(set(info["bads"]).intersection(want)) if len(got) == 1: raise RuntimeError( f"NIRS bad labelling is not consistent, found {got} but " f"needed {want}" ) return picks def _throw_or_return_empty(msg, throw_errors): if throw_errors: raise ValueError(msg) else: return [] def _validate_nirs_info( info, *, throw_errors=True, fnirs=None, which=None, check_bads=True, allow_empty=True, ): """Apply all checks to fNIRS info. Works on all continuous wave types.""" _validate_type(fnirs, (None, str), "fnirs") kinds = dict( od="optical density", cw_amplitude="continuous wave", hb="chromophore", ) _check_option("fnirs", fnirs, (None,) + tuple(kinds)) if fnirs is not None: kind = kinds[fnirs] fnirs = ["hbo", "hbr"] if fnirs == "hb" else f"fnirs_{fnirs}" if not len(pick_types(info, fnirs=fnirs)): raise RuntimeError( f"{which} must operate on {kind} data, but none was found." ) freqs = np.unique(_channel_frequencies(info)) if freqs.size > 0: pair_vals = freqs else: pair_vals = np.unique(_channel_chromophore(info)) out = _check_channels_ordered( info, pair_vals, throw_errors=throw_errors, check_bads=check_bads ) return out def _fnirs_spread_bads(info): """Spread bad labeling across fnirs channels.""" # For an optode pair if any component (light frequency or chroma) is marked # as bad, then they all should be. This function will find any pairs marked # as bad and spread the bad marking to all components of the optode pair. picks = _validate_nirs_info(info, check_bads=False) new_bads = set(info["bads"]) for ii, jj in zip(picks[::2], picks[1::2]): ch1_name, ch2_name = info.ch_names[ii], info.ch_names[jj] if ch1_name in new_bads: new_bads.add(ch2_name) elif ch2_name in new_bads: new_bads.add(ch1_name) info["bads"] = sorted(new_bads) return info def _fnirs_optode_names(info): """Return list of unique optode names.""" picks_wave = _picks_to_idx( info, ["fnirs_cw_amplitude", "fnirs_od"], exclude=[], allow_empty=True ) picks_chroma = _picks_to_idx(info, ["hbo", "hbr"], exclude=[], allow_empty=True) if len(picks_wave) > 0: regex = _S_D_F_RE elif len(picks_chroma) > 0: regex = _S_D_H_RE else: return [], [] sources = np.unique([int(regex.match(ch).groups()[0]) for ch in info.ch_names]) detectors = np.unique([int(regex.match(ch).groups()[1]) for ch in info.ch_names]) src_names = [f"S{s}" for s in sources] det_names = [f"D{d}" for d in detectors] return src_names, det_names def _optode_position(info, optode): """Find the position of an optode.""" idx = [optode in a for a in info.ch_names].index(True) if "S" in optode: loc_idx = range(3, 6) elif "D" in optode: loc_idx = range(6, 9) return info["chs"][idx]["loc"][loc_idx] def _reorder_nirx(raw): # Maybe someday we should make this public like # mne.preprocessing.nirs.reorder_standard(raw, order='nirx') info = raw.info picks = pick_types(info, fnirs=True, exclude=[]) prefixes = [info["ch_names"][pick].split()[0] for pick in picks] nirs_names = [info["ch_names"][pick] for pick in picks] nirs_sorted = sorted( nirs_names, key=lambda name: (prefixes.index(name.split()[0]), name.split(maxsplit=1)[1]), ) raw.reorder_channels(nirs_sorted)