# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD (3-clause)
import numpy as np
import pandas as pd
from mne import pick_types
from mne.io import BaseRaw
from mne.utils import _require_version, _validate_type
[docs]
def quantify_mayer_fooof(
raw,
num_oscillations=1,
centre_frequency=0.01,
extra_df_fields=None,
fmin=0.001,
fmax=1,
tmin=0,
tmax=None,
n_fft=400,
n_overlap=200,
peak_width_limits=(0.5, 12.0),
):
"""
Quantify Mayer wave properties using FOOOF analysis.
The Fitting Oscillations & One Over F (FOOOF)
:footcite:`donoghue2020parameterizing`
is utilised to estimate Mayer wave oscillation parameters as described in
:footcite:`luke2021characterization`.
The FOOOF algorithm is applied to the mean PSD estimate of the data,
the oscillation closest to the `centre_frequency` is assumed to be the
Mayer wave oscillation. The parameters for this oscillation are returned
as a dataframe. You can return multiple closest oscillations to the
centre_frequency by increasing the `num_oscillations` parameter.
Parameters
----------
raw : instance of Raw
The haemoglobin data.
num_oscillations : number
Number of parameterised oscilations to be returned. These are selected
in increasing distance from the `centre_frequency`.
centre_frequency : number
Centre frequency of the Mayer wave.
extra_df_fields : number
Dictionary of values to be appended to the dataframe.
fmin : float
Min frequency of interest.
fmax : float
Max frequency of interest.
tmin : float | None
Min time of interest.
tmax : float | None
Max time of interest.
n_fft : int
The length of FFT used, must be ``>= n_per_seg`` (default: 256).
The segments will be zero-padded if ``n_fft > n_per_seg``.
If n_per_seg is None, n_fft must be <= number of time points
in the data.
n_overlap : int
The number of points of overlap between segments. Will be adjusted
to be <= n_per_seg. The default value is 0.
peak_width_limits : tuple of (float, float), optional, default: (0.5, 12.0)
Limits on possible peak width, in Hz, as (lower_bound, upper_bound).
As used by FOOOF.
Returns
-------
df : DataFrame
Dataframe with columns.
References
----------
.. footbibliography::
"""
_require_version("fooof", "run the FOOOF algorithm.")
_validate_type(raw, BaseRaw, "raw")
extra_df_fields = {} if extra_df_fields is None else extra_df_fields
hbo_picks = pick_types(raw.info, fnirs="hbo")
hbr_picks = pick_types(raw.info, fnirs="hbr")
if (not len(hbo_picks)) & (not len(hbr_picks)):
# It may be perfectly valid to compute this on optical density
# or raw data, I just haven't tried this. Let me know if this works
# for you and we can ease this restriction.
raise RuntimeError(
"Mayer wave estimation should be run on haemoglobin concentration data."
)
df = pd.DataFrame()
for picks, chroma in zip([hbo_picks, hbr_picks], ["hbo", "hbr"]):
if len(picks):
fm_hbo = _run_fooof(
raw.copy().pick(picks),
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
n_overlap=n_overlap,
n_fft=n_fft,
peak_width_limits=peak_width_limits,
)
cf, pw, bw = _process_fooof_output(fm_hbo, centre_frequency)
data = dict()
data["Centre Frequency"] = cf
data["Bandwidth"] = bw
data["Power"] = pw
data["Chromaphore"] = chroma
data = {**data, **extra_df_fields}
df = pd.concat([df, pd.DataFrame(data, index=[0])], ignore_index=True)
return df
def _run_fooof(
raw,
fmin=0.001,
fmax=1,
tmin=0,
tmax=None,
n_overlap=200,
n_fft=400,
peak_width_limits=(0.5, 12.0),
):
"""Prepare data for FOOOF including welch and scaling, then apply."""
from fooof import FOOOF
psd = raw.compute_psd(
fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, n_overlap=n_overlap, n_fft=n_fft
)
spectra, freqs = psd.get_data(return_freqs=True)
# FOOOF doesn't like low frequencies, so multiple by 10.
# This is corrected for in the output below.
freqs = freqs * 10
# Remember these values are really 0.001 to 1.2 Hz
fm = FOOOF(peak_width_limits=peak_width_limits)
# And these values are really 0.0001 to 1 Hz
freq_range = [0.001, 10]
fm.fit(freqs, np.mean(spectra, axis=0), freq_range)
return fm
def _process_fooof_output(fm, centre_frequency):
"""Extract and post fix FOOOF result."""
CFs = [d[0] for d in fm.peak_params_]
# In this line we correct for the scaling done in _run_fooof()
mayer_idx = _find_nearest_idx(CFs, centre_frequency * 10)
mayer = fm.peak_params_[mayer_idx]
cf = mayer[0] / 10 # Correct scaling
bw = mayer[2] / 10 # Correct scaling
pw = mayer[1]
return cf, pw, bw
def _find_nearest_idx(a, a0):
"""Element idx in nd array `a` closest to the scalar value `a0`."""
if isinstance(a, list):
a = np.array(a)
idx = np.abs(a - a0).argmin()
return idx