Source code for mne_nirs.visualisation._plot_GLM_surface_projection

# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD (3-clause)

import os
from copy import deepcopy

import numpy as np
from mne import EvokedArray, Info, read_source_spaces, stc_near_sensors
from mne.io.constants import FIFF
from mne.utils import get_subjects_dir, verbose


[docs] @verbose def plot_glm_surface_projection( inst, statsmodel_df, picks="hbo", value="Coef.", background="w", figure=None, clim="auto", mode="weighted", colormap="RdBu_r", surface="pial", hemi="both", size=800, view=None, colorbar=True, distance=0.03, subjects_dir=None, src=None, verbose=False, ): """ Project GLM results on to the surface of the brain. Note: This function provides a convenient wrapper around low level MNE-Python functions. It is convenient if you wish to use a generic head model. If you have acquired fMRI images you may wish to use the underlying lower level functions. Note: This function does not conduct a forward model analysis with photon migration etc. It simply projects the values from each channel to the local cortical surface. It is useful for visualisation, but users should take this in to consideration when drawing conclusions from the visualisation. Parameters ---------- inst : instance of Raw Haemoglobin data. statsmodel_df : dataframe As produced by produced by `statsmodels_to_results`. %(picks_base)s good sEEG, ECoG, and DBS channels. value : str Column from dataframe to plot. background : matplotlib color Color of the background of the display window. figure : mayavi.core.api.Scene, matplotlib.figure.Figure, list, int, None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the Mayavi figure by it's id or create a new figure with the given id. If an instance of matplotlib figure, mpl backend is used for plotting. %(clim)s mode : str Can be "sum" to do a linear sum of weights, "weighted" to make this a weighted sum, "nearest" to use only the weight of the nearest sensor, or "single" to do a distance-weight of the nearest sensor. Default is "sum". colormap : str Colormap to use. surface : str The type of surface (inflated, white etc.). hemi : str Hemisphere id (ie 'lh', 'rh', 'both', or 'split'). In the case of 'both', both hemispheres are shown in the same window. In the case of 'split' hemispheres are displayed side-by-side in different viewing panes. size : float or tuple of float The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. Has no effect with mpl backend. view : str View to set brain to. colorbar : bool If True, display colorbar on scene. distance : float Distance (m) defining the activation "ball" of the sensor. %(subjects_dir)s src : instance of SourceSpaces The source space. %(verbose)s Returns ------- figure : instance of mne.viz.Brain | matplotlib.figure.Figure An instance of :class:`mne.viz.Brain` or matplotlib figure. """ info = deepcopy(inst if isinstance(inst, Info) else inst.info) if not (info.ch_names == list(statsmodel_df["ch_name"].values)): raise RuntimeError( "MNE data structure does not match dataframe " f"results.\nMNE = {info.ch_names}.\n" f"GLM = {list(statsmodel_df['ch_name'].values)}" ) ea = EvokedArray(np.tile(statsmodel_df[value].values.T, (1, 1)).T, info.copy()) return _plot_3d_evoked_array( inst, ea, picks=picks, value=value, background=background, figure=figure, clim=clim, mode=mode, colormap=colormap, surface=surface, hemi=hemi, size=size, view=view, colorbar=colorbar, distance=distance, subjects_dir=subjects_dir, src=src, verbose=verbose, )
def _plot_3d_evoked_array( inst, ea, picks="hbo", value="Coef.", background="w", figure=None, clim="auto", mode="weighted", colormap="RdBu_r", surface="pial", hemi="both", size=800, view=None, colorbar=True, distance=0.03, subjects_dir=None, src=None, verbose=False, ): # TODO: mimic behaviour of other MNE-NIRS glm plotting options if picks is not None: ea = ea.pick(picks=picks) if subjects_dir is None: subjects_dir = get_subjects_dir(raise_error=True) if src is None: fname_src_fs = os.path.join( subjects_dir, "fsaverage", "bem", "fsaverage-ico-5-src.fif" ) src = read_source_spaces(fname_src_fs) picks = np.arange(len(ea.info["ch_names"])) # Set coord frame for idx in range(len(ea.ch_names)): ea.info["chs"][idx]["coord_frame"] = FIFF.FIFFV_COORD_HEAD # Generate source estimate kwargs = dict( evoked=ea, subject="fsaverage", trans="fsaverage", distance=distance, mode=mode, surface=surface, subjects_dir=subjects_dir, src=src, project=True, ) stc = stc_near_sensors(picks=picks, **kwargs, verbose=verbose) # Produce brain plot brain = stc.plot( src=src, subjects_dir=subjects_dir, hemi=hemi, surface=surface, initial_time=0, clim=clim, size=size, colormap=colormap, figure=figure, background=background, colorbar=colorbar, verbose=verbose, ) if view is not None: brain.show_view(view) return brain