# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD (3-clause)
import os
from copy import deepcopy
import numpy as np
from mne import EvokedArray, Info, read_source_spaces, stc_near_sensors
from mne.io.constants import FIFF
from mne.utils import get_subjects_dir, verbose
[docs]
@verbose
def plot_glm_surface_projection(
inst,
statsmodel_df,
picks="hbo",
value="Coef.",
background="w",
figure=None,
clim="auto",
mode="weighted",
colormap="RdBu_r",
surface="pial",
hemi="both",
size=800,
view=None,
colorbar=True,
distance=0.03,
subjects_dir=None,
src=None,
verbose=False,
):
"""
Project GLM results on to the surface of the brain.
Note: This function provides a convenient wrapper around low level
MNE-Python functions. It is convenient if you wish to use a generic head
model. If you have acquired fMRI images you may wish to use the underlying
lower level functions.
Note: This function does not conduct a forward model analysis with photon
migration etc. It simply projects the values from each channel to the
local cortical surface. It is useful for visualisation, but users should
take this in to consideration when drawing conclusions from the
visualisation.
Parameters
----------
inst : instance of Raw
Haemoglobin data.
statsmodel_df : dataframe
As produced by produced by `statsmodels_to_results`.
%(picks_base)s good sEEG, ECoG, and DBS channels.
value : str
Column from dataframe to plot.
background : matplotlib color
Color of the background of the display window.
figure : mayavi.core.api.Scene, matplotlib.figure.Figure, list, int, None
If None, a new figure will be created. If multiple views or a
split view is requested, this must be a list of the appropriate
length. If int is provided it will be used to identify the Mayavi
figure by it's id or create a new figure with the given id. If an
instance of matplotlib figure, mpl backend is used for plotting.
%(clim)s
mode : str
Can be "sum" to do a linear sum of weights, "weighted" to make this
a weighted sum, "nearest" to
use only the weight of the nearest sensor, or "single" to
do a distance-weight of the nearest sensor. Default is "sum".
colormap : str
Colormap to use.
surface : str
The type of surface (inflated, white etc.).
hemi : str
Hemisphere id (ie 'lh', 'rh', 'both', or 'split'). In the case
of 'both', both hemispheres are shown in the same window.
In the case of 'split' hemispheres are displayed side-by-side
in different viewing panes.
size : float or tuple of float
The size of the window, in pixels. can be one number to specify
a square window, or the (width, height) of a rectangular window.
Has no effect with mpl backend.
view : str
View to set brain to.
colorbar : bool
If True, display colorbar on scene.
distance : float
Distance (m) defining the activation "ball" of the sensor.
%(subjects_dir)s
src : instance of SourceSpaces
The source space.
%(verbose)s
Returns
-------
figure : instance of mne.viz.Brain | matplotlib.figure.Figure
An instance of :class:`mne.viz.Brain` or matplotlib figure.
"""
info = deepcopy(inst if isinstance(inst, Info) else inst.info)
if not (info.ch_names == list(statsmodel_df["ch_name"].values)):
raise RuntimeError(
"MNE data structure does not match dataframe "
f"results.\nMNE = {info.ch_names}.\n"
f"GLM = {list(statsmodel_df['ch_name'].values)}"
)
ea = EvokedArray(np.tile(statsmodel_df[value].values.T, (1, 1)).T, info.copy())
return _plot_3d_evoked_array(
inst,
ea,
picks=picks,
value=value,
background=background,
figure=figure,
clim=clim,
mode=mode,
colormap=colormap,
surface=surface,
hemi=hemi,
size=size,
view=view,
colorbar=colorbar,
distance=distance,
subjects_dir=subjects_dir,
src=src,
verbose=verbose,
)
def _plot_3d_evoked_array(
inst,
ea,
picks="hbo",
value="Coef.",
background="w",
figure=None,
clim="auto",
mode="weighted",
colormap="RdBu_r",
surface="pial",
hemi="both",
size=800,
view=None,
colorbar=True,
distance=0.03,
subjects_dir=None,
src=None,
verbose=False,
):
# TODO: mimic behaviour of other MNE-NIRS glm plotting options
if picks is not None:
ea = ea.pick(picks=picks)
if subjects_dir is None:
subjects_dir = get_subjects_dir(raise_error=True)
if src is None:
fname_src_fs = os.path.join(
subjects_dir, "fsaverage", "bem", "fsaverage-ico-5-src.fif"
)
src = read_source_spaces(fname_src_fs)
picks = np.arange(len(ea.info["ch_names"]))
# Set coord frame
for idx in range(len(ea.ch_names)):
ea.info["chs"][idx]["coord_frame"] = FIFF.FIFFV_COORD_HEAD
# Generate source estimate
kwargs = dict(
evoked=ea,
subject="fsaverage",
trans="fsaverage",
distance=distance,
mode=mode,
surface=surface,
subjects_dir=subjects_dir,
src=src,
project=True,
)
stc = stc_near_sensors(picks=picks, **kwargs, verbose=verbose)
# Produce brain plot
brain = stc.plot(
src=src,
subjects_dir=subjects_dir,
hemi=hemi,
surface=surface,
initial_time=0,
clim=clim,
size=size,
colormap=colormap,
figure=figure,
background=background,
colorbar=colorbar,
verbose=verbose,
)
if view is not None:
brain.show_view(view)
return brain