# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD (3-clause)
import inspect
from copy import deepcopy
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from mne import Info, pick_info
from mne.channels.layout import _merge_ch_data
from mne.io.pick import _picks_to_idx
from mne.utils import warn
from mne.viz import plot_topomap
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
def _plot_glm_topo(
inst,
glm_estimates,
design_matrix,
*,
requested_conditions=None,
axes=None,
vlim=None,
vmin=None,
vmax=None,
colorbar=True,
figsize=(12, 7),
sphere=None,
):
info = deepcopy(inst if isinstance(inst, Info) else inst.info)
if not (info.ch_names == list(glm_estimates.keys())):
if len(info.ch_names) < len(list(glm_estimates.keys())):
warn("Reducing GLM results to match MNE data")
glm_estimates = {a: glm_estimates[a] for a in info.ch_names}
else:
raise RuntimeError(
"MNE data structure does not match regression "
f"results. Raw = {len(info.ch_names)}. "
f"GLM = {len(list(glm_estimates.keys()))}"
)
estimates = np.zeros((len(glm_estimates), len(design_matrix.columns)))
for idx, name in enumerate(glm_estimates.keys()):
estimates[idx, :] = glm_estimates[name].theta.T
types = np.unique(info.get_channel_types())
if requested_conditions is None:
requested_conditions = design_matrix.columns
requested_conditions = [
x for x in design_matrix.columns if x in requested_conditions
]
# Plotting setup
if axes is None:
fig, axes = plt.subplots(
nrows=len(types), ncols=len(requested_conditions), figsize=figsize
)
estimates = estimates[:, [c in requested_conditions for c in design_matrix.columns]]
estimates = estimates * 1e6
design_matrix = design_matrix[requested_conditions]
vlim, vlim_kwargs = _handle_vlim(vlim, vmin, vmax, estimates)
del vmin, vmax
cmap = mpl.cm.RdBu_r
norm = mpl.colors.Normalize(vmin=vlim[0], vmax=vlim[1])
for t_idx, t in enumerate(types):
estmrg, pos, chs, sphere = _handle_overlaps(info, t, sphere, estimates)
for idx, label in enumerate(design_matrix.columns):
if label in requested_conditions:
# Deal with case when only a single
# chroma or condition is available
if (len(requested_conditions) == 1) & (len(types) == 1):
ax = axes
elif (len(requested_conditions) == 1) & (len(types) > 1):
ax = axes[t_idx]
elif (len(requested_conditions) > 1) & (len(types) == 1):
ax = axes[idx]
else:
ax = axes[t_idx, idx]
plot_topomap(
estmrg[:, idx],
pos,
extrapolate="local",
names=chs,
cmap=cmap,
axes=ax,
show=False,
sphere=sphere,
**vlim_kwargs,
)
ax.set_title(label)
if colorbar:
ax1_divider = make_axes_locatable(ax)
cax1 = ax1_divider.append_axes("right", size="7%", pad="2%")
cbar = mpl.colorbar.ColorbarBase(
cax1, cmap=cmap, norm=norm, orientation="vertical"
)
cbar.set_label("Haemoglobin (uM)", rotation=270)
return _get_fig_from_axes(axes)
def _plot_glm_contrast_topo(inst, contrast, figsize=(12, 7), sphere=None):
info = deepcopy(inst if isinstance(inst, Info) else inst.info)
# Extract types. One subplot is created per type (hbo/hbr)
types = np.unique(info.get_channel_types())
# Extract values to plot and rescale to uM
estimates = contrast.effect
if estimates.ndim == 2: # old nilearn
assert estimates.shape[0] == 1
estimates = estimates[0]
estimates = estimates * 1e6
# Create subplots for figures
fig, axes = plt.subplots(nrows=1, ncols=len(types), figsize=figsize)
# Create limits for colorbar
vlim, vlim_kwargs = _handle_vlim((None, None), None, None, estimates)
cmap = mpl.cm.RdBu_r
norm = mpl.colors.Normalize(vmin=vlim[0], vmax=vlim[1])
for t_idx, t in enumerate(types):
estmrg, pos, chs, sphere = _handle_overlaps(info, t, sphere, estimates)
# Deal with case when only a single chroma is available
if len(types) == 1:
ax = axes
else:
ax = axes[t_idx]
# Plot the topomap
plot_topomap(
estmrg,
pos,
extrapolate="local",
names=chs,
cmap=cmap,
axes=ax,
show=False,
sphere=sphere,
**vlim_kwargs,
)
# Sets axes title
if t == "hbo":
ax.set_title("Oxyhaemoglobin")
elif t == "hbr":
ax.set_title("Deoxyhaemoglobin")
else:
ax.set_title(t)
# Create a single colorbar for all types based on limits above
ax1_divider = make_axes_locatable(ax)
cax1 = ax1_divider.append_axes("right", size="7%", pad="2%")
cbar = mpl.colorbar.ColorbarBase(cax1, cmap=cmap, norm=norm, orientation="vertical")
cbar.set_label("Contrast Effect", rotation=270)
return fig
[docs]
def plot_glm_group_topo(
inst,
statsmodel_df,
value="Coef.",
axes=None,
threshold=False,
*,
vlim=(None, None),
vmin=None,
vmax=None,
cmap=None,
sensors=True,
res=64,
sphere=None,
colorbar=True,
names=False,
show_names=None,
extrapolate="local",
image_interp="cubic",
):
"""
Plot topomap of NIRS group level GLM results.
Parameters
----------
inst : instance of Info or Raw
Raw data or info structure used to generate the GLM results.
statsmodel_df : DataFrame
Dataframe created from a statsmodel summary.
value : String
Which column in the `statsmodel_df` to use in the topo map.
axes : instance of Axes | None
The axes to plot to. If None, the current axes will be used.
threshold : Bool
If threshold is true, all values with P>|z| greater than 0.05 will
be set to zero.
vlim : tuple of length 2
Colormap limits to use. If a :class:`tuple` of floats, specifies the
lower and upper bounds of the colormap (in that order); providing
``None`` for either entry will set the corresponding boundary at the
min/max of the data (separately for each topomap).
vmin : float | None
Deprecated, use 'vlim' instead.
vmax : float | None
Deprecated, use 'vlim' instead.
cmap : matplotlib colormap | None
Colormap to use. If None, 'Reds' is used for all positive data,
otherwise defaults to 'RdBu_r'.
sensors : bool | str
Add markers for sensor locations to the plot. Accepts matplotlib plot
format string (e.g., 'r+' for red plusses). If True (default), circles
will be used.
res : int
The resolution of the topomap image (n pixels along each side).
sphere : numbers
As specified in mne.
colorbar : bool
Should a colorbar be plotted.
names : list of str
The channel names to display.
show_names : bool
Deprecated, use ``names`` instead.
extrapolate : str
Type of extrapolation for image.
image_interp : str
Type of interpolation for image.
Returns
-------
fig : figure
Figure with topographic representation of statsmodel_df value.
"""
info = deepcopy(inst if isinstance(inst, Info) else inst.info)
if show_names is not None:
names = show_names
warn(
"show_names is deprecated and will be removed in the next "
"release, use names instead",
FutureWarning,
)
del show_names
# Check that the channels in two inputs match
if not (info.ch_names == list(statsmodel_df["ch_name"].values)):
if len(info.ch_names) < len(list(statsmodel_df["ch_name"].values)):
print("Reducing GLM results to match MNE data")
statsmodel_df["Keep"] = [
g in info.ch_names for g in statsmodel_df["ch_name"]
]
statsmodel_df = statsmodel_df.query("Keep == True")
else:
warn("MNE data structure does not match regression results")
statsmodel_df = statsmodel_df.set_index("ch_name")
statsmodel_df = statsmodel_df.reindex(info.ch_names)
# Extract estimate of interest to plot
estimates = statsmodel_df[value].values
if threshold:
p = statsmodel_df["P>|z|"].values
t = p > 0.05
estimates[t] = 0.0
assert len(np.unique(statsmodel_df["Chroma"])) == 1, "Only one Chroma allowed"
if "Condition" in statsmodel_df.columns:
assert len(np.unique(statsmodel_df["Condition"])) == 1, (
"Only one condition allowed"
)
c = np.unique(statsmodel_df["Condition"])[0]
else:
c = "Contrast"
t = np.unique(statsmodel_df["Chroma"])[0]
# Plotting setup
if axes is None:
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(12, 7))
# Set limits of topomap and colors
vlim, vlim_kwargs = _handle_vlim(vlim, vmin, vmax, estimates)
del vmin, vmax
if cmap is None:
cmap = mpl.cm.RdBu_r
norm = mpl.colors.Normalize(vmin=vlim[0], vmax=vlim[1])
estmrg, pos, chs, sphere = _handle_overlaps(info, t, sphere, estimates)
if "names" in inspect.signature(plot_topomap).parameters:
names_kwarg = dict(names=chs if names else [""] * len(chs))
else:
names_kwarg = dict(show_names=names, names=chs)
plot_topomap(
estmrg,
pos,
extrapolate=extrapolate,
image_interp=image_interp,
cmap=cmap,
axes=axes,
sensors=sensors,
res=res,
show=False,
sphere=sphere,
**vlim_kwargs,
**names_kwarg,
)
axes.set_title(c)
if colorbar:
ax1_divider = make_axes_locatable(axes)
cax1 = ax1_divider.append_axes("right", size="7%", pad="2%")
cbar = mpl.colorbar.ColorbarBase(
cax1, cmap=cmap, norm=norm, orientation="vertical"
)
cbar.set_label(value, rotation=270)
return axes
def _handle_overlaps(info, t, sphere, estimates):
"""Prepare for topomap including merging channels."""
from mne.viz.topomap import _prepare_topomap_plot
picks = _picks_to_idx(info, t, exclude=[], allow_empty=True)
info_subset = pick_info(info, picks)
(
_,
pos,
merge_channels,
ch_names,
ch_type,
sphere,
clip_origin,
) = _prepare_topomap_plot(info_subset, t, sphere=sphere)
estmrg, ch_names = _merge_ch_data(estimates.copy()[picks], t, ch_names)
return estmrg, pos, ch_names, sphere
def _get_fig_from_axes(ax):
if isinstance(ax, mpl.axes.SubplotBase):
return ax.figure
elif type(ax) is np.ndarray:
return _get_fig_from_axes(ax[0])
else:
raise RuntimeError(f"Unable to extract figure from {ax}")
def _handle_vlim(vlim, vmin, vmax, estimates):
if vmin is not None or vmax is not None:
warn(
"vmin and vmax are deprecated and will be removed in the next "
"release, please use vlim instead",
FutureWarning,
)
vlim = (vmin, vmax)
else:
vmin, vmax = vlim
if vmax is None:
vmax = np.max(np.abs(estimates))
if vmin is None:
vmin = vmax * -1.0
vlim = tuple(vlim)
if "vlim" in inspect.signature(plot_topomap).parameters:
kwargs = dict(vlim=(vmin, vmax))
else:
kwargs = dict(vmin=vmin, vmax=vmax)
return vlim, kwargs