Source code for mne_realtime.epochs

# Authors: Christoph Dinh <chdinh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import time
import copy

import numpy as np

from mne import pick_channels
from mne.io.pick import _picks_to_idx
from mne.utils import logger, verbose, fill_doc, warn
from mne.epochs import BaseEpochs
from mne.event import _find_events


[docs] @fill_doc class RtEpochs(BaseEpochs): """Realtime Epochs. Can receive epochs in real time from an RtClient. For example, to get some epochs from a running mne_rt_server on 'localhost', you could use:: client = mne_realtime.RtClient('localhost') event_id, tmin, tmax = 1, -0.2, 0.5 epochs = mne_realtime.RtEpochs(client, event_id, tmin, tmax) epochs.start() # start the measurement and start receiving epochs evoked_1 = epochs.average() # computed over all epochs evoked_2 = epochs[-5:].average() # computed over the last 5 epochs Parameters ---------- client : instance of mne_realtime.RtClient The realtime client. event_id : int | list of int The id of the event to consider. If int, only events with the ID specified by event_id are considered. Multiple event ID's can be specified using a list. tmin : float Start time before event. tmax : float End time after event. stim_channel : string or list of string Name of the stim channel or all the stim channels affected by the trigger. sleep_time : float Time in seconds to wait between checking for new epochs when epochs are requested and the receive queue is empty. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. %(picks_all)s reject : dict | None Rejection parameters based on peak-to-peak amplitude. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'. If reject is None then no rejection is done. Example:: reject = dict(grad=4000e-13, # T / m (gradiometers) mag=4e-12, # T (magnetometers) eeg=40e-6, # V (EEG channels) eog=250e-6 # V (EOG channels)) flat : dict | None Rejection parameters based on flatness of signal. Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values are floats that set the minimum acceptable peak-to-peak amplitude. If flat is None then no rejection is done. proj : bool, optional Apply SSP projection vectors decim : int Factor by which to downsample the data from the raw file upon import. Warning: This simply selects every nth sample, data is not filtered here. If data is not properly filtered, aliasing artifacts may occur. reject_tmin : scalar | None Start of the time window used to reject epochs (with the default None, the window will start with tmin). reject_tmax : scalar | None End of the time window used to reject epochs (with the default None, the window will end with tmax). detrend : int | None If 0 or 1, the data channels (MEG and EEG) will be detrended when loaded. 0 is a constant (DC) detrend, 1 is a linear detrend. None is no detrending. Note that detrending is performed before baseline correction. If no DC offset is preferred (zeroth order detrending), either turn off baseline correction, as this may introduce a DC shift, or set baseline correction to use the entire time interval (will yield equivalent results but be slower). isi_max : float The maximum time in seconds between epochs. If no epoch arrives in the next isi_max seconds the RtEpochs stops. find_events : dict The arguments to the real-time `find_events` method as a dictionary. If `find_events` is None, then default values are used. Example (also default values):: find_events = dict(output='onset', consecutive='increasing', min_duration=0, mask=0, mask_type='not_and', verbose='ERROR') See :func:`mne.find_events` for detailed explanation of these options. %(verbose)s Defaults to client.verbose. Attributes ---------- info : dict Measurement info. event_id : dict Names of of conditions corresponding to event_ids. ch_names : list of string List of channels' names. events : array, shape (n_events, 3) The events associated with the epochs currently in the queue. %(verbose)s Notes ----- - Calling `next()` on an `RtEpochs` object (as internally done when iterating over the object) is blocking, i.e., waits for at most `isi_max` seconds for a new epoch to be received. - Calling `get_data()` on an `RtEpochs` object immediately returns the epochs received so far (without waiting for new epochs). """ @verbose def __init__(self, client, event_id, tmin, tmax, stim_channel='STI 014', sleep_time=0.1, baseline=(None, 0), picks=None, reject=None, flat=None, proj=True, decim=1, reject_tmin=None, reject_tmax=None, detrend=None, isi_max=2., find_events=None, verbose=None): # noqa: D102 info = client.get_measurement_info() # the measurement info of the data as we receive it self._client_info = copy.deepcopy(info) verbose = client.verbose if verbose is None else verbose # FIFO queues for received epochs and events # need to be initialized to validate invariants in base constructor self._epoch_queue = list() self._events = list() self._selection = list() # Number of good and bad epochs received self._n_good = 0 self._n_bad = 0 # call BaseEpochs constructor super(RtEpochs, self).__init__( info, None, None, event_id, tmin, tmax, baseline, picks=picks, reject=reject, flat=flat, decim=decim, reject_tmin=reject_tmin, reject_tmax=reject_tmax, detrend=detrend, verbose=verbose, proj=True) self._bad_dropped = True self._client = client if not isinstance(stim_channel, list): stim_channel = [stim_channel] stim_picks = pick_channels(self._client_info['ch_names'], include=stim_channel, exclude=[]) if len(stim_picks) == 0: raise ValueError('No stim channel found to extract event ' 'triggers.') self._stim_picks = stim_picks # find_events default options self._find_events_kwargs = dict(output='onset', consecutive='increasing', min_duration=0, mask=0, mask_type='not_and', verbose='ERROR') # update default options if dictionary is provided if find_events is not None: self._find_events_kwargs.update(find_events) min_samples = (self._find_events_kwargs['min_duration'] * self.info['sfreq']) self._find_events_kwargs.pop('min_duration', None) self._find_events_kwargs['min_samples'] = min_samples self._sleep_time = sleep_time # add calibration factors cals = np.zeros(self._client_info['nchan']) for k in range(self._client_info['nchan']): cals[k] = (self._client_info['chs'][k]['range'] * self._client_info['chs'][k]['cal']) self._cals = cals[:, None] # variables needed for receiving raw buffers self._last_buffer = None self._first_samp = 0 self._event_backlog = list() self._started = False self._last_time = time.time() self.isi_max = isi_max
[docs] def __getitem__(self, item): """Return an Epochs object with a copied subset of epochs. Parameters ---------- item : int | slice | array-like | str See Notes for use cases. Returns ------- epochs : instance of Epochs The subset of epochs. Notes ----- See :class:`mne.Epochs` for more information. """ return super().__getitem__(item)
@property def events(self): """The events associated with the epochs currently in the queue.""" return np.array(self._events) @events.setter def events(self, new_events): """ Update the internal event list. Parameters ---------- new_events : array of int, shape (n_events, 3) new events """ self._events = [tuple(new_events[i, :]) for i in range(len(new_events))] @property def selection(self): """Array of integers of the current selection.""" return np.asarray(self._selection, dtype=int) @selection.setter def selection(self, new_selection): """ Update the internal selection list. Parameters ---------- new_selection : iterable of epoch indices """ self._selection = list(new_selection)
[docs] def copy(self): """Return copy of Epochs instance.""" client = self._client del self._client new = super(RtEpochs, self).copy() self._client = client new._client = client return new
def _getitem(self, item, reason='IGNORED', copy=True, drop_event_id=True, select_data=True, return_indices=False): epochs, select = super(RtEpochs, self)._getitem( item=item, reason=reason, copy=copy, drop_event_id=drop_event_id, select_data=False, return_indices=True) # try to be compatible with numpy indexing new_queue = list() for kept_idx in np.arange(len(epochs._epoch_queue), dtype=int)[select]: new_queue.append(epochs._epoch_queue[kept_idx]) epochs._epoch_queue = new_queue epochs._n_good = len(epochs._epoch_queue) return epochs
[docs] def start(self): """Start receiving epochs. The measurement will be started if it has not already been started. """ if not self._started: # register the callback self._client.register_receive_callback(self._process_raw_buffer) # start the measurement and the receive thread nchan = self._client_info['nchan'] self._client.start_receive_thread(nchan) self._started = True self._last_time = np.inf # init delay counter. Will stop iters
[docs] def stop(self, stop_receive_thread=True, stop_measurement=False): """Stop receiving epochs. Parameters ---------- stop_receive_thread : bool Stop the receive thread. Note: Other RtEpochs instances will also stop receiving epochs when the receive thread is stopped. The receive thread will always be stopped if stop_measurement is True. stop_measurement : bool Also stop the measurement. Note: Other clients attached to the server will also stop receiving data. """ if self._started: self._client.unregister_receive_callback(self._process_raw_buffer) self._started = False if stop_receive_thread or stop_measurement: self._client.stop_receive_thread(stop_measurement=stop_measurement)
@verbose def __next__(self, return_event_id=False, verbose=None): """Make iteration over epochs easy. Parameters ---------- return_event_id : bool If True, return both an epoch and and event_id. verbose: bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose`. Defaults to self.verbose. Returns ------- epoch : instance of Epochs The epoch. event_id : int The event id. Only returned if ``return_event_id`` is ``True``. """ first = True while True: current_time = time.time() if len(self._epoch_queue) > self._current: epoch = self._epoch_queue[self._current] event_id = self._events[self._current][-1] self._current += 1 self._last_time = current_time return (epoch, event_id) if return_event_id else epoch if current_time > (self._last_time + self.isi_max): logger.info('Time of %s seconds exceeded.' % self.isi_max) raise StopIteration # signal the end properly if self._started: if first: logger.info('Waiting for epoch %d' % (self._current + 1)) first = False time.sleep(self._sleep_time) else: raise RuntimeError('Not enough epochs in queue and currently ' 'not receiving epochs, cannot get epochs!') next = __next__ @verbose def _get_data(self, out=True, picks=None, item=None, *, units=None, tmin=None, tmax=None, copy=True, verbose=None): if not out: return unused = dict(tmin=tmin, units=units, tmax=tmax) for key, value in unused.items(): if value is not None: warn(f'the {key} argument is currently not supported and ' 'will be ignored') item = slice(None) if item is None else item select = self._item_to_select(item) # indices or slice use_idx = np.arange(len(self._events))[select] if picks is None: picks = slice(None) else: picks = _picks_to_idx(self.info, picks, none='all', exclude=()) return np.array([self._epoch_queue[idx][picks] for idx in use_idx]) def _process_raw_buffer(self, raw_buffer): """Process raw buffer (callback from RtClient). Note: Do not print log messages during regular use. It will be printed asynchronously which is annoying when working in an interactive shell. Parameters ---------- raw_buffer : array of float, shape=(nchan, n_times) The raw buffer. """ sfreq = self.info['sfreq'] n_samp = len(self._raw_times) # relative start and stop positions in samples tmin_samp = int(round(sfreq * self.tmin)) tmax_samp = tmin_samp + n_samp last_samp = self._first_samp + raw_buffer.shape[1] - 1 # apply calibration without inplace modification raw_buffer = self._cals * raw_buffer # detect events data = np.abs(raw_buffer[self._stim_picks]).astype(np.int64) # if there is a previous buffer check the last samples from it too if self._last_buffer is not None: prev_data = self._last_buffer[ self._stim_picks, -raw_buffer.shape[1]:].astype(np.int64) data = np.concatenate((prev_data, data), axis=1) data = np.atleast_2d(data) buff_events = _find_events(data, self._first_samp - raw_buffer.shape[1], **self._find_events_kwargs) else: data = np.atleast_2d(data) buff_events = _find_events(data, self._first_samp, **self._find_events_kwargs) events = self._event_backlog # remove events before the last epoch processed min_event_samp = self._first_samp - \ int(self._find_events_kwargs['min_samples']) if len(self._event_backlog) > 0: backlog_samps = np.array(self._event_backlog)[:, 0] min_event_samp = backlog_samps[-1] + 1 if buff_events.shape[0] > 0: valid_events_idx = buff_events[:, 0] >= min_event_samp buff_events = buff_events[valid_events_idx] # add events from this buffer to the list of events # processed so far for event_id in self.event_id.values(): idx = np.where(buff_events[:, -1] == event_id)[0] events.extend(zip(list(buff_events[idx, 0]), list(buff_events[idx, -1]))) events.sort() event_backlog = list() for event_samp, event_id in events: epoch = None if (event_samp + tmin_samp >= self._first_samp and event_samp + tmax_samp <= last_samp): # easy case: whole epoch is in this buffer start = event_samp + tmin_samp - self._first_samp stop = event_samp + tmax_samp - self._first_samp epoch = raw_buffer[:, start:stop] elif (event_samp + tmin_samp < self._first_samp and event_samp + tmax_samp <= last_samp): # have to use some samples from previous buffer if self._last_buffer is None: continue n_last = self._first_samp - (event_samp + tmin_samp) n_this = n_samp - n_last epoch = np.c_[self._last_buffer[:, -n_last:], raw_buffer[:, :n_this]] elif event_samp + tmax_samp > last_samp: # we need samples from the future # we will process this epoch with the next buffer event_backlog.append((event_samp, event_id)) else: raise RuntimeError('Unhandled case..') if epoch is not None: self._append_epoch_to_queue(epoch, event_samp, event_id) # set things up for processing of next buffer self._event_backlog = event_backlog n_buffer = raw_buffer.shape[1] if self._last_buffer is None: self._last_buffer = raw_buffer elif self._last_buffer.shape[1] <= n_samp + n_buffer: self._last_buffer = np.c_[self._last_buffer, raw_buffer] else: # do not increase size of _last_buffer any further self._last_buffer[:, :-n_buffer] = self._last_buffer[:, n_buffer:] self._last_buffer[:, -n_buffer:] = raw_buffer self._first_samp = self._first_samp + n_buffer def _append_epoch_to_queue(self, epoch, event_samp, event_id): """Append a (raw) epoch to queue. Note: Do not print log messages during regular use. It will be printed asynchronously which is annyoing when working in an interactive shell. Parameters ---------- epoch : array of float, shape=(nchan, n_times) The raw epoch (only calibration has been applied) over all channels. event_samp : int The time in samples when the epoch occurred. event_id : int The event ID of the epoch. """ # select the channels epoch = epoch[self.picks, :] # Detrend, baseline correct, decimate kwargs = dict() try: # Needed on MNE 0.23+ kwargs['picks'] = self._detrend_picks except AttributeError: pass epoch = self._detrend_offset_decim(epoch, verbose='ERROR', **kwargs) # apply SSP epoch = self._project_epoch(epoch) # Decide if this is a good epoch is_good, offending_reasons = self._is_good_epoch(epoch, verbose='ERROR') if is_good: self._epoch_queue.append(epoch) self._events.append((event_samp, 0, event_id)) self.drop_log = self.drop_log + (tuple(),) self._selection.append(len(self.drop_log) - 1) self._n_good += 1 else: self.drop_log = self.drop_log + (tuple(offending_reasons),) self._n_bad += 1
[docs] @verbose def decimate(self, decim, offset=0, verbose=None): """Decimate the epochs. .. note:: No filtering is performed. To avoid aliasing, ensure your data are properly lowpassed. Parameters ---------- decim : int The amount to decimate data. offset : int Apply an offset to where the decimation starts relative to the sample corresponding to t=0. The offset is in samples at the current sampling rate. .. versionadded:: 0.12 %(verbose)s Returns ------- epochs : instance of Epochs The decimated Epochs object. See Also -------- mne.Evoked.decimate mne.Epochs.resample mne.io.Raw.resample Notes ----- Decimation can be done multiple times. For example, ``epochs.decimate(2).decimate(2)`` will be the same as ``epochs.decimate(4)``. If `decim` is 1, this method does not copy the underlying data. .. versionadded:: 0.10.0 """ super(RtEpochs, self).decimate(decim, offset, verbose=verbose) for i in range(len(self._epoch_queue)): self._epoch_queue[i] = self._epoch_queue[i][:, self._decim_slice] return self
def __repr__(self): # noqa: D105 s = 'good / bad epochs received: %d / %d, epochs in queue: %d, '\ % (self._n_good, self._n_bad, len(self._epoch_queue)) s += ', tmin : %s (s)' % self.tmin s += ', tmax : %s (s)' % self.tmax s += ', baseline : %s' % str(self.baseline) return '<RtEpochs | %s>' % s