Compute all-to-all connectivity in sensor space

Computes the Phase Lag Index (PLI) between all gradiometers and shows the connectivity in 3D using the helmet geometry. The left visual stimulation data are used which produces strong connectvitiy in the right occipital sensors.

# Author: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

import mne
from mne import io
from mne.connectivity import spectral_connectivity
from mne.datasets import sample
from mne.viz import plot_sensors_connectivity

print(__doc__)

Set parameters

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'

# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname)
events = mne.read_events(event_fname)

# Add a bad channel
raw.info['bads'] += ['MEG 2443']

# Pick MEG gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True,
                       exclude='bads')

# Create epochs for the visual condition
event_id, tmin, tmax = 3, -0.2, 1.5  # need a long enough epoch for 5 cycles
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6))

# Compute connectivity for band containing the evoked response.
# We exclude the baseline period
fmin, fmax = 3., 9.
sfreq = raw.info['sfreq']  # the sampling frequency
tmin = 0.0  # exclude the baseline period
epochs.load_data().pick_types(meg='grad')  # just keep MEG and no EOG now
con, freqs, times, n_epochs, n_tapers = spectral_connectivity(
    epochs, method='pli', mode='multitaper', sfreq=sfreq, fmin=fmin, fmax=fmax,
    faverage=True, tmin=tmin, mt_adaptive=False, n_jobs=1)

# Now, visualize the connectivity in 3D
plot_sensors_connectivity(epochs.info, con[:, :, 0])
../../_images/sphx_glr_plot_sensor_connectivity_001.png

Out:

Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Current compensation grade : 0
73 matching events found
Applying baseline correction (mode: mean)
Not setting metadata
4 projection items activated
Loading data for 73 events and 256 original time points ...
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
    Rejecting  epoch based on EOG : ['EOG 061']
24 bad epochs dropped
Connectivity computation...
only using indices for lower-triangular matrix
    computing connectivity for 20503 connections
    using t=0.000s..1.698s for estimation (256 points)
    frequencies: 3.5Hz..8.8Hz (10 points)
    connectivity scores will be averaged for each band
    Using multitaper spectrum estimation with 7 DPSS windows
    the following metrics will be computed: PLI
    computing connectivity for epoch 1
    computing connectivity for epoch 2
    computing connectivity for epoch 3
    computing connectivity for epoch 4
    computing connectivity for epoch 5
    computing connectivity for epoch 6
    computing connectivity for epoch 7
    computing connectivity for epoch 8
    computing connectivity for epoch 9
    computing connectivity for epoch 10
    computing connectivity for epoch 11
    computing connectivity for epoch 12
    computing connectivity for epoch 13
    computing connectivity for epoch 14
    computing connectivity for epoch 15
    computing connectivity for epoch 16
    computing connectivity for epoch 17
    computing connectivity for epoch 18
    computing connectivity for epoch 19
    computing connectivity for epoch 20
    computing connectivity for epoch 21
    computing connectivity for epoch 22
    computing connectivity for epoch 23
    computing connectivity for epoch 24
    computing connectivity for epoch 25
    computing connectivity for epoch 26
    computing connectivity for epoch 27
    computing connectivity for epoch 28
    computing connectivity for epoch 29
    computing connectivity for epoch 30
    computing connectivity for epoch 31
    computing connectivity for epoch 32
    computing connectivity for epoch 33
    computing connectivity for epoch 34
    computing connectivity for epoch 35
    computing connectivity for epoch 36
    computing connectivity for epoch 37
    computing connectivity for epoch 38
    computing connectivity for epoch 39
    computing connectivity for epoch 40
    computing connectivity for epoch 41
    computing connectivity for epoch 42
    computing connectivity for epoch 43
    computing connectivity for epoch 44
    computing connectivity for epoch 45
    computing connectivity for epoch 46
    computing connectivity for epoch 47
    computing connectivity for epoch 48
    computing connectivity for epoch 49
    assembling connectivity matrix (filling the upper triangular region of the matrix)
[Connectivity computation done]

Total running time of the script: ( 0 minutes 6.026 seconds)

Estimated memory usage: 29 MB

Gallery generated by Sphinx-Gallery