Note
Click here to download the full example code
Getting started with mne.Report
¶
This tutorial covers making interactive HTML summaries with
mne.Report
.
Page contents
As usual we’ll start by importing the modules we need and loading some example data:
import os
import mne
Before getting started with mne.Report
, make sure the files you want
to render follow the filename conventions defined by MNE:
Data object |
Filename convention (ends with) |
---|---|
raw |
-raw.fif(.gz), -raw_sss.fif(.gz), -raw_tsss.fif(.gz), _meg.fif |
events |
-eve.fif(.gz) |
epochs |
-epo.fif(.gz) |
evoked |
-ave.fif(.gz) |
covariance |
-cov.fif(.gz) |
SSP projectors |
-proj.fif(.gz) |
trans |
-trans.fif(.gz) |
forward |
-fwd.fif(.gz) |
inverse |
-inv.fif(.gz) |
Alternatively, the dash -
in the filename may be replaced with an
underscore _
.
Basic reports¶
The basic process for creating an HTML report is to instantiate the
Report
class, then use the parse_folder()
method to select particular files to include in the report. Which files are
included depends on both the pattern
parameter passed to
parse_folder()
and also the subject
and
subjects_dir
parameters provided to the Report
constructor.
For our first example, we’ll generate a barebones report for all the
.fif
files containing raw data in the sample dataset, by passing the
pattern *raw.fif
to parse_folder()
. We’ll omit the
subject
and subjects_dir
parameters from the Report
constructor, but we’ll also pass render_bem=False
to the
parse_folder()
method — otherwise we would get a warning
about not being able to render MRI and trans
files without knowing the
subject.
path = mne.datasets.sample.data_path(verbose=False)
report = mne.Report(verbose=True)
report.parse_folder(path, pattern='*raw.fif', render_bem=False)
report.save('report_basic.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 3 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/ernoise_raw.fif
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/ernoise_raw.fif...
Isotrak not found
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 19800 ... 85867 = 32.966 ... 142.965 secs
Ready.
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Saving report to location /home/circleci/project/tutorials/misc/report_basic.html
Rendering : Table of Contents
raw
... ernoise_raw.fif
... sample_audvis_filt-0-40_raw.fif
... sample_audvis_raw.fif
This report yields a textual summary of the Raw
files
selected by the pattern. For a slightly more useful report, we’ll ask for the
power spectral density of the Raw
files, by passing
raw_psd=True
to the Report
constructor. We’ll also
visualize the SSP projectors stored in the raw data’s Info
dictionary
by setting projs=True
. Lastly, let’s also refine our pattern to select
only the filtered raw recording (omitting the unfiltered data and the
empty-room noise recordings):
pattern = 'sample_audvis_filt-0-40_raw.fif'
report = mne.Report(raw_psd=True, projs=True, verbose=True)
report.parse_folder(path, pattern=pattern, render_bem=False)
report.save('report_raw_psd.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 1 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Effective window size : 13.639 (s)
Effective window size : 13.639 (s)
Effective window size : 13.639 (s)
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Saving report to location /home/circleci/project/tutorials/misc/report_raw_psd.html
Rendering : Table of Contents
raw
... sample_audvis_filt-0-40_raw.fif
The sample dataset also contains SSP projectors stored as individual files.
To add them to a report, we also have to provide the path to a file
containing an Info
dictionary, from which the channel locations can be
read.
info_fname = os.path.join(path, 'MEG', 'sample',
'sample_audvis_filt-0-40_raw.fif')
pattern = 'sample_audvis_*proj.fif'
report = mne.Report(info_fname=info_fname, verbose=True)
report.parse_folder(path, pattern=pattern, render_bem=False)
report.save('report_proj.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 2 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_ecg-proj.fif
Read a total of 6 projection items:
ECG-planar-999--0.200-0.400-PCA-01 (1 x 203) idle
ECG-planar-999--0.200-0.400-PCA-02 (1 x 203) idle
ECG-axial-999--0.200-0.400-PCA-01 (1 x 102) idle
ECG-axial-999--0.200-0.400-PCA-02 (1 x 102) idle
ECG-eeg-999--0.200-0.400-PCA-01 (1 x 59) idle
ECG-eeg-999--0.200-0.400-PCA-02 (1 x 59) idle
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_eog-proj.fif
Read a total of 6 projection items:
EOG-planar-998--0.200-0.200-PCA-01 (1 x 203) idle
EOG-planar-998--0.200-0.200-PCA-02 (1 x 203) idle
EOG-axial-998--0.200-0.200-PCA-01 (1 x 102) idle
EOG-axial-998--0.200-0.200-PCA-02 (1 x 102) idle
EOG-eeg-998--0.200-0.200-PCA-01 (1 x 59) idle
EOG-eeg-998--0.200-0.200-PCA-02 (1 x 59) idle
Saving report to location /home/circleci/project/tutorials/misc/report_proj.html
Rendering : Table of Contents
ssp
... sample_audvis_ecg-proj.fif
... sample_audvis_eog-proj.fif
This time we’ll pass a specific subject
and subjects_dir
(even though
there’s only one subject in the sample dataset) and remove our
render_bem=False
parameter so we can see the MRI slices, with BEM
contours overlaid on top if available. Since this is computationally
expensive, we’ll also pass the mri_decim
parameter for the benefit of our
documentation servers, and skip processing the .fif
files:
subjects_dir = os.path.join(path, 'subjects')
report = mne.Report(subject='sample', subjects_dir=subjects_dir, verbose=True)
report.parse_folder(path, pattern='', mri_decim=25)
report.save('report_mri_bem.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 0 potential files (this may take some time)
Rendering BEM
Using surface: /home/circleci/mne_data/MNE-sample-data/subjects/sample/bem/inner_skull.surf
Using surface: /home/circleci/mne_data/MNE-sample-data/subjects/sample/bem/outer_skull.surf
Using surface: /home/circleci/mne_data/MNE-sample-data/subjects/sample/bem/outer_skin.surf
Saving report to location /home/circleci/project/tutorials/misc/report_mri_bem.html
Rendering : Table of Contents
bem
... bem
Now let’s look at how Report
handles Evoked
data
(we’ll skip the MRIs to save computation time). The following code will
produce butterfly plots, topomaps, and comparisons of the global field
power (GFP) for different experimental conditions.
pattern = 'sample_audvis-no-filter-ave.fif'
report = mne.Report(verbose=True)
report.parse_folder(path, pattern=pattern, render_bem=False)
report.save('report_evoked.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 1 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-no-filter-ave.fif
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Multiple channel types selected, returning one figure per type.
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
Saving report to location /home/circleci/project/tutorials/misc/report_evoked.html
Rendering : Table of Contents
evoked
... sample_audvis-no-filter-ave.fif
You have probably noticed that the EEG recordings look particularly odd. This
is because by default, Report
does not apply baseline correction
before rendering evoked data. So if the dataset you wish to add to the report
has not been baseline-corrected already, you can request baseline correction
here. The MNE sample dataset we’re using in this example has not been
baseline-corrected; so let’s do this now for the report!
To request baseline correction, pass a baseline
argument to
Report
, which should be a tuple with the starting and ending time of
the baseline period. For more details, see the documentation on
apply_baseline
. Here, we will apply baseline correction for a
baseline period from the beginning of the time interval to time point zero.
baseline = (None, 0)
pattern = 'sample_audvis-no-filter-ave.fif'
report = mne.Report(baseline=baseline, verbose=True)
report.parse_folder(path, pattern=pattern, render_bem=False)
report.save('report_evoked_baseline.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 1 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-no-filter-ave.fif
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Multiple channel types selected, returning one figure per type.
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
Saving report to location /home/circleci/project/tutorials/misc/report_evoked_baseline.html
Rendering : Table of Contents
evoked
... sample_audvis-no-filter-ave.fif
To render whitened Evoked
files with baseline correction, pass
the baseline
argument we just used, and add the noise covariance file.
This will display ERP/ERF plots for both the original and whitened
Evoked
objects, but scalp topomaps only for the original.
cov_fname = os.path.join(path, 'MEG', 'sample', 'sample_audvis-cov.fif')
baseline = (None, 0)
report = mne.Report(cov_fname=cov_fname, baseline=baseline, verbose=True)
report.parse_folder(path, pattern=pattern, render_bem=False)
report.save('report_evoked_whitened.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
366 x 366 full covariance (kind = 1) found.
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Iterating over 1 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-no-filter-ave.fif
Computing rank from covariance with rank=None
Using tolerance 4.7e-14 (2.2e-16 eps * 59 dim * 3.6 max singular value)
Estimated rank (eeg): 58
EEG: rank 58 computed from 59 data channels with 1 projector
Computing rank from covariance with rank=None
Using tolerance 1.8e-13 (2.2e-16 eps * 203 dim * 3.9 max singular value)
Estimated rank (grad): 203
GRAD: rank 203 computed from 203 data channels with 0 projectors
Computing rank from covariance with rank=None
Using tolerance 2.5e-14 (2.2e-16 eps * 102 dim * 1.1 max singular value)
Estimated rank (mag): 99
MAG: rank 99 computed from 102 data channels with 3 projectors
Created an SSP operator (subspace dimension = 4)
Computing rank from covariance with rank={'eeg': 58, 'grad': 203, 'mag': 99, 'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Setting small EEG eigenvalues to zero (without PCA)
Created the whitener using a noise covariance matrix with rank 360 (4 small eigenvalues omitted)
Computing rank from covariance with rank=None
Using tolerance 4.7e-14 (2.2e-16 eps * 59 dim * 3.6 max singular value)
Estimated rank (eeg): 58
EEG: rank 58 computed from 59 data channels with 1 projector
Computing rank from covariance with rank=None
Using tolerance 1.8e-13 (2.2e-16 eps * 203 dim * 3.9 max singular value)
Estimated rank (grad): 203
GRAD: rank 203 computed from 203 data channels with 0 projectors
Computing rank from covariance with rank=None
Using tolerance 2.5e-14 (2.2e-16 eps * 102 dim * 1.1 max singular value)
Estimated rank (mag): 99
MAG: rank 99 computed from 102 data channels with 3 projectors
Created an SSP operator (subspace dimension = 4)
Computing rank from covariance with rank={'eeg': 58, 'grad': 203, 'mag': 99, 'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Setting small EEG eigenvalues to zero (without PCA)
Created the whitener using a noise covariance matrix with rank 360 (4 small eigenvalues omitted)
Computing rank from covariance with rank=None
Using tolerance 4.7e-14 (2.2e-16 eps * 59 dim * 3.6 max singular value)
Estimated rank (eeg): 58
EEG: rank 58 computed from 59 data channels with 1 projector
Computing rank from covariance with rank=None
Using tolerance 1.8e-13 (2.2e-16 eps * 203 dim * 3.9 max singular value)
Estimated rank (grad): 203
GRAD: rank 203 computed from 203 data channels with 0 projectors
Computing rank from covariance with rank=None
Using tolerance 2.5e-14 (2.2e-16 eps * 102 dim * 1.1 max singular value)
Estimated rank (mag): 99
MAG: rank 99 computed from 102 data channels with 3 projectors
Created an SSP operator (subspace dimension = 4)
Computing rank from covariance with rank={'eeg': 58, 'grad': 203, 'mag': 99, 'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Setting small EEG eigenvalues to zero (without PCA)
Created the whitener using a noise covariance matrix with rank 360 (4 small eigenvalues omitted)
Computing rank from covariance with rank=None
Using tolerance 4.7e-14 (2.2e-16 eps * 59 dim * 3.6 max singular value)
Estimated rank (eeg): 58
EEG: rank 58 computed from 59 data channels with 1 projector
Computing rank from covariance with rank=None
Using tolerance 1.8e-13 (2.2e-16 eps * 203 dim * 3.9 max singular value)
Estimated rank (grad): 203
GRAD: rank 203 computed from 203 data channels with 0 projectors
Computing rank from covariance with rank=None
Using tolerance 2.5e-14 (2.2e-16 eps * 102 dim * 1.1 max singular value)
Estimated rank (mag): 99
MAG: rank 99 computed from 102 data channels with 3 projectors
Created an SSP operator (subspace dimension = 4)
Computing rank from covariance with rank={'eeg': 58, 'grad': 203, 'mag': 99, 'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Setting small EEG eigenvalues to zero (without PCA)
Created the whitener using a noise covariance matrix with rank 360 (4 small eigenvalues omitted)
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | PCA-v1, active : True, n_channels : 102>
Removing projector <Projection | PCA-v2, active : True, n_channels : 102>
Removing projector <Projection | PCA-v3, active : True, n_channels : 102>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>
Multiple channel types selected, returning one figure per type.
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
combining channels using "gfp"
Saving report to location /home/circleci/project/tutorials/misc/report_evoked_whitened.html
Rendering : Table of Contents
evoked
... sample_audvis-no-filter-ave.fif (whitened)
... sample_audvis-no-filter-ave.fif
If you want to actually view the noise covariance in the report, make sure
it is captured by the pattern passed to parse_folder()
, and
also include a source for an Info
object (any of the
Raw
, Epochs
or Evoked
.fif
files that contain subject data also contain the measurement
information and should work):
pattern = 'sample_audvis-cov.fif'
info_fname = os.path.join(path, 'MEG', 'sample', 'sample_audvis-ave.fif')
report = mne.Report(info_fname=info_fname, verbose=True)
report.parse_folder(path, pattern=pattern, render_bem=False)
report.save('report_cov.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Iterating over 1 potential files (this may take some time)
Rendering : /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-cov.fif
366 x 366 full covariance (kind = 1) found.
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Computing rank from covariance with rank=None
Using tolerance 2.5e-14 (2.2e-16 eps * 102 dim * 1.1 max singular value)
Estimated rank (mag): 102
MAG: rank 102 computed from 102 data channels with 0 projectors
Computing rank from covariance with rank=None
Using tolerance 1.8e-13 (2.2e-16 eps * 203 dim * 3.9 max singular value)
Estimated rank (grad): 203
GRAD: rank 203 computed from 203 data channels with 0 projectors
Computing rank from covariance with rank=None
Using tolerance 4.7e-14 (2.2e-16 eps * 59 dim * 3.6 max singular value)
Estimated rank (eeg): 59
EEG: rank 59 computed from 59 data channels with 0 projectors
Saving report to location /home/circleci/project/tutorials/misc/report_cov.html
Rendering : Table of Contents
covariance
... sample_audvis-cov.fif
Adding custom plots to a report¶
The python interface has greater flexibility compared to the command
line interface. For example, custom plots can be added via
the add_figs_to_section()
method:
# generate a custom plot:
fname_evoked = os.path.join(path, 'MEG', 'sample', 'sample_audvis-ave.fif')
evoked = mne.read_evokeds(fname_evoked,
condition='Left Auditory',
baseline=(None, 0),
verbose=True)
fig = evoked.plot(show=False)
# add the custom plot to the report:
report.add_figs_to_section(fig, captions='Left Auditory', section='evoked')
report.save('report_custom.html', overwrite=True)
The HTML document written by mne.Report.save()
:
Out:
Reading /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Left Auditory)
0 CTF compensation matrices available
nave = 55 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
Saving report to location /home/circleci/project/tutorials/misc/report_custom.html
Rendering : Table of Contents
covariance
... sample_audvis-cov.fif
evoked
... Left Auditory
Managing report sections¶
The MNE report command internally manages the sections so that plots
belonging to the same section are rendered consecutively. Within a section,
the plots are ordered in the same order that they were added using the
add_figs_to_section()
command. Each section is identified
by a toggle button in the top navigation bar of the report which can be used
to show or hide the contents of the section. To toggle the show/hide state of
all sections in the HTML report, press t.
Note
Although we’ve been generating separate reports in each example, you could
easily create a single report for all .fif
files (raw, evoked,
covariance, etc) by passing pattern='*.fif'
.
Editing a saved report¶
Saving to HTML is a write-only operation, meaning that we cannot read an
.html
file back as a Report
object. In order to be able
to edit a report once it’s no longer in-memory in an active Python session,
save it as an HDF5 file instead of HTML:
report.save('report.h5', overwrite=True)
report_from_disk = mne.open_report('report.h5')
print(report_from_disk)
Out:
Saving report to location /home/circleci/project/tutorials/misc/report.h5
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
<Report | 2 items | MNE Report for ...data/MNE-sample-data
... sample_audvis-cov.fif
... Left Auditory
>
This allows the possibility of multiple scripts adding figures to the same
report. To make this even easier, mne.Report
can be used as a
context manager:
with mne.open_report('report.h5') as report:
report.add_figs_to_section(fig,
captions='Left Auditory',
section='evoked',
replace=True)
report.save('report_final.html', overwrite=True)
Out:
Embedding : jquery.js
Embedding : jquery-ui.min.js
Embedding : bootstrap.min.js
Embedding : jquery-ui.min.css
Embedding : bootstrap.min.css
Saving report to location /home/circleci/project/tutorials/misc/report_final.html
Rendering : Table of Contents
covariance
... sample_audvis-cov.fif
evoked
... Left Auditory
Saving report to location /home/circleci/project/tutorials/misc/report.h5
With the context manager, the updated report is also automatically saved
back to report.h5
upon leaving the block.
Total running time of the script: ( 1 minutes 7.493 seconds)
Estimated memory usage: 136 MB