mne.cov.prepare_noise_cov¶
-
mne.cov.prepare_noise_cov(noise_cov, info, ch_names=None, rank=None, scalings=None, verbose=None)[source]¶ Prepare noise covariance matrix.
- Parameters
- noise_covinstance of
Covariance The noise covariance to process.
- info
dict The measurement info (used to get channel types and bad channels).
- ch_names
list|None The channel names to be considered. Can be None to use
info['ch_names'].- rank
None|dict| ‘info’ | ‘full’ This controls the rank computation that can be read from the measurement info or estimated from the data. See
Notesofmne.compute_rank()for details.The default is None.New in version 0.18: Support for ‘info’ mode.
- scalings
dict|None Data will be rescaled before rank estimation to improve accuracy. If dict, it will override the following dict (default if None):
dict(mag=1e12, grad=1e11, eeg=1e5)
- verbosebool,
str,int, orNone If not None, override default verbose level (see
mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only.
- noise_covinstance of
- Returns
- covinstance of
Covariance A copy of the covariance with the good channels subselected and parameters updated.
- covinstance of