OMEGA Resting State Sample Data¶
Demonstrated features¶
| Feature | This example | 
|---|---|
| MEG processing | ✅ | 
| EEG processing | ❌ | 
| Maxwell filter | ❌ | 
| Frequency filter | ✅ | 
| Artifact regression | ❌ | 
| SSP | ✅ | 
| ICA | ❌ | 
| Evoked contrasts | ❌ | 
| Time-by-time decoding | ❌ | 
| Time-generalization decoding | ❌ | 
| CSP decoding | ❌ | 
| Time-frequency analysis | ✅ | 
| BEM surface creation | ❌ | 
| Template MRI | ❌ | 
Dataset source¶
This dataset was acquired from https://openneuro.org/datasets/ds000247
How to download this dataset
Run in your terminal:
Run in your terminal
openneuro-py download \
             --dataset=ds000247 \
             --include=sub-0002/ses-01/meg
Configuration¶
Click to expand
Python
.
import numpy as np
study_name = "ds000247"
bids_root = f"~/mne_data/{study_name}"
deriv_root = f"~/mne_data/derivatives/mne-bids-pipeline/{study_name}"
subjects = ["0002"]
sessions = ["01"]
task = "rest"
task_is_rest = True
crop_runs = (0, 100)  # to speed up computations
ch_types = ["meg"]
spatial_filter = "ssp"
l_freq = 1.0
h_freq = 40.0
rest_epochs_duration = 10
rest_epochs_overlap = 0
epochs_tmin = 0
baseline = None
time_frequency_conditions = ["rest"]
time_frequency_freq_min = 1.0
time_frequency_freq_max = 30.0
time_frequency_cycles = np.arange(time_frequency_freq_min, time_frequency_freq_max) / 4
time_frequency_subtract_evoked = True