Note
Click here to download the full example code or to run this example in your browser via Binder
03. Convert MNE sample data to BIDS format¶
In this example we will use MNE-BIDS to organize the MNE sample data according to the BIDS standard. In a second step we will read the organized dataset using MNE-BIDS.
# Authors: Mainak Jas <mainak.jas@telecom-paristech.fr>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Teon Brooks <teon.brooks@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
First we import some basic Python libraries, followed by MNE-Python and its sample data, and then finally the MNE-BIDS functions we need for this example
import os.path as op
import mne
from mne.datasets import sample
from mne_bids import write_raw_bids, read_raw_bids, make_bids_basename
from mne_bids.utils import print_dir_tree
Now we can read the MNE sample data. We define an event_id based on our knowledge of the data, to give meaning to events in the data.
With raw_fname and events_data we determine where to get the sample data from. output_path determines where we will write the BIDS conversion to.
data_path = sample.data_path()
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3,
'Visual/Right': 4, 'Smiley': 5, 'Button': 32}
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif')
events_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-eve.fif')
output_path = op.join(data_path, '..', 'MNE-sample-data-bids')
Note
mne-bids
will try to infer as much information from the data as
possible to then save this data in BIDS specific “sidecar” files. For
example the manufacturer information, which is inferred from the data file
extension. However, sometimes inferring is ambiguous (e.g., if your file
format is non-standard for the manufacturer). In these cases, MNE-BIDS does
not guess and you will have to update your BIDS fields manually.
Based on our path definitions above, we read the raw data file, define a new BIDS name for it, and then run the automatic BIDS conversion.
raw = mne.io.read_raw_fif(raw_fname)
bids_basename = make_bids_basename(subject='01', session='01',
task='audiovisual', run='01')
write_raw_bids(raw, bids_basename, output_path, events_data=events_data,
event_id=event_id, overwrite=True)
Out:
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Creating folder: /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.tsv'...
participant_id age sex hand
sub-01 n/a n/a n/a
sub-emptyroom n/a n/a n/a
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.json'...
{
"participant_id": {
"Description": "Unique participant identifier"
},
"age": {
"Description": "Age of the participant at time of testing",
"Units": "years"
},
"sex": {
"Description": "Biological sex of the participant",
"Levels": {
"F": "female",
"M": "male"
}
},
"hand": {
"Description": "Handedness of the participant",
"Levels": {
"R": "right",
"L": "left",
"A": "ambidextrous"
}
}
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/sub-01_ses-01_scans.tsv'...
filename acq_time
meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif 2002-12-03T19:01:10
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_coordsystem.json'...
{
"MEGCoordinateSystem": "Elekta",
"MEGCoordinateUnits": "m",
"HeadCoilCoordinates": {
"NAS": [
3.725290298461914e-09,
0.10260561108589172,
4.190951585769653e-09
],
"LPA": [
-0.07137660682201385,
0.0,
5.122274160385132e-09
],
"RPA": [
0.07526767998933792,
0.0,
5.587935447692871e-09
],
"coil1": [
0.032922741025686264,
0.09897983074188232,
0.07984329760074615
],
"coil2": [
-0.06998106092214584,
0.06771647930145264,
0.06888450682163239
],
"coil3": [
-0.07260829955339432,
-0.02086828649044037,
0.0971473976969719
],
"coil4": [
0.04996863007545471,
-0.007233052980154753,
0.1228904277086258
]
},
"HeadCoilCoordinateSystem": "RAS",
"HeadCoilCoordinateUnits": "m"
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_events.tsv'...
onset duration trial_type value sample
3.6246181587150867 0.0 Auditory/Right 2 2177
4.237323479067476 0.0 Visual/Left 3 2545
4.946596485779753 0.0 Auditory/Left 1 2971
5.692498614904401 0.0 Visual/Right 4 3419
6.41342634238425 0.0 Auditory/Right 2 3852
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/dataset_description.json'...
{
"Name": " ",
"BIDSVersion": "1.2.2",
"Authors": [
"MNE-BIDS"
]
}
Effective window size : 0.426 (s)
/home/stefanappelhoff/Desktop/bids/mne-bids/mne_bids/write.py:559: UserWarning: No line frequency found, defaulting to 60 Hz estimated from multi-taper FFT on 10 seconds of data.
'on 10 seconds of data.'.format(powerlinefrequency))
Reading 0 ... 166799 = 0.000 ... 277.714 secs...
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.json'...
{
"TaskName": "audiovisual",
"Manufacturer": "Elekta",
"PowerLineFrequency": 60,
"SamplingFrequency": 600.614990234375,
"SoftwareFilters": "n/a",
"RecordingDuration": 277.7136813300495,
"RecordingType": "continuous",
"DewarPosition": "n/a",
"DigitizedLandmarks": false,
"DigitizedHeadPoints": false,
"MEGChannelCount": 306,
"MEGREFChannelCount": 0,
"EEGChannelCount": 60,
"EOGChannelCount": 1,
"ECGChannelCount": 0,
"EMGChannelCount": 0,
"MiscChannelCount": 0,
"TriggerChannelCount": 9
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_channels.tsv'...
name type units low_cutoff high_cutoff description sampling_frequency status
MEG 0113 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0112 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0111 MEGMAG T 0.10000000149011612 172.17630004882812 Magnetometer 600.614990234375 good
MEG 0122 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0123 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
Copying data files to /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg
Overwriting existing file.
Writing /home/stefanappelhoff/mne_data/MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif
Closing /home/stefanappelhoff/mne_data/MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif [done]
'/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids'
Now let’s see the structure of the BIDS folder we created.
print_dir_tree(output_path)
Out:
|MNE-sample-data-bids/
|--- participants.tsv
|--- dataset_description.json
|--- participants.json
|--- sub-emptyroom/
|------ ses-20021201/
|--------- sub-emptyroom_ses-20021201_scans.tsv
|--------- meg/
|------------ sub-emptyroom_ses-20021201_task-noise_meg.json
|------------ sub-emptyroom_ses-20021201_task-noise_channels.tsv
|------------ sub-emptyroom_ses-20021201_task-noise_meg.fif
|------ ses-20021001/
|--------- sub-emptyroom_ses-20021001_scans.tsv
|--------- meg/
|------------ sub-emptyroom_ses-20021001_task-noise_meg.json
|------------ sub-emptyroom_ses-20021001_task-noise_meg.fif
|------------ sub-emptyroom_ses-20021001_task-noise_channels.tsv
|------ ses-20021206/
|--------- sub-emptyroom_ses-20021206_scans.tsv
|--------- meg/
|------------ sub-emptyroom_ses-20021206_task-noise_meg.json
|------------ sub-emptyroom_ses-20021206_task-noise_channels.tsv
|------------ sub-emptyroom_ses-20021206_task-noise_meg.fif
|------ ses-20021204/
|--------- sub-emptyroom_ses-20021204_scans.tsv
|--------- meg/
|------------ sub-emptyroom_ses-20021204_task-noise_meg.json
|------------ sub-emptyroom_ses-20021204_task-noise_meg.fif
|------------ sub-emptyroom_ses-20021204_task-noise_channels.tsv
|--- sub-01/
|------ ses-01/
|--------- sub-01_ses-01_scans.tsv
|--------- meg/
|------------ sub-01_ses-01_coordsystem.json
|------------ sub-01_ses-01_task-audiovisual_run-01_meg.json
|------------ sub-01_ses-01_task-audiovisual_run-01_channels.tsv
|------------ sub-01_ses-01_task-audiovisual_run-01_meg.fif
|------------ sub-01_ses-01_task-audiovisual_run-01_events.tsv
|--------- anat/
|------------ sub-01_ses-01_T1w.nii.gz
|------------ sub-01_ses-01_T1w.json
A big advantage of having data organized according to BIDS is that software
packages can automate your workflow. For example, reading the data back
into MNE-Python can easily be done using read_raw_bids()
.
bids_fname = bids_basename + '_meg.fif'
raw = read_raw_bids(bids_fname, output_path)
Out:
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Reading events from /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_events.tsv.
Reading channel info from /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_channels.tsv.
/home/stefanappelhoff/Desktop/bids/mne-bids/mne_bids/read.py:275: RuntimeWarning: The unit for channel(s) STI 001, STI 002, STI 003, STI 004, STI 005, STI 006, STI 014, STI 015, STI 016 has changed from V to NA.
raw.set_channel_types(channel_type_dict)
/home/stefanappelhoff/Desktop/bids/mne-bids/mne_bids/utils.py:635: UserWarning: Did not find any electrodes.tsv file associated with sub-01_ses-01_task-audiovisual_run-01_meg.fif.
The search_str was "/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/**/sub-01_ses-01*electrodes.tsv"
warnings.warn(msg)
The resulting data is already in a convenient form to create epochs and evoked data.
events, event_id = mne.events_from_annotations(raw)
epochs = mne.Epochs(raw, events, event_id)
epochs['Auditory'].average().plot()
Out:
Used Annotations descriptions: ['Auditory/Left', 'Auditory/Right', 'Button', 'Smiley', 'Visual/Left', 'Visual/Right']
320 matching events found
Applying baseline correction (mode: mean)
Not setting metadata
Created an SSP operator (subspace dimension = 3)
3 projection items activated
<Figure size 640x500 with 3 Axes>
Total running time of the script: ( 0 minutes 3.478 seconds)