Source code for mne_bids.read

"""Check whether a file format is supported by BIDS and then load it."""
# Authors: Mainak Jas <mainak.jas@telecom-paristech.fr>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Teon Brooks <teon.brooks@gmail.com>
#          Chris Holdgraf <choldgraf@berkeley.edu>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import os.path as op
import glob
import json

import numpy as np
import mne
from mne import io
from mne.utils import has_nibabel, logger, warn
from mne.coreg import fit_matched_points
from mne.transforms import apply_trans

from mne_bids.dig import _read_dig_bids
from mne_bids.tsv_handler import _from_tsv, _drop
from mne_bids.config import ALLOWED_DATATYPE_EXTENSIONS, reader, _map_options
from mne_bids.utils import _extract_landmarks, _get_ch_type_mapping
from mne_bids.path import (BIDSPath, _parse_ext, _find_matching_sidecar,
                           _infer_datatype)


def _read_raw(raw_fpath, electrode=None, hsp=None, hpi=None,
              allow_maxshield=False, config=None, verbose=None, **kwargs):
    """Read a raw file into MNE, making inferences based on extension."""
    _, ext = _parse_ext(raw_fpath)

    # KIT systems
    if ext in ['.con', '.sqd']:
        raw = io.read_raw_kit(raw_fpath, elp=electrode, hsp=hsp,
                              mrk=hpi, preload=False, **kwargs)

    # BTi systems
    elif ext == '.pdf':
        raw = io.read_raw_bti(raw_fpath, config_fname=config,
                              head_shape_fname=hsp,
                              preload=False, verbose=verbose,
                              **kwargs)

    elif ext == '.fif':
        raw = reader[ext](raw_fpath, allow_maxshield, **kwargs)

    elif ext in ['.ds', '.vhdr', '.set', '.edf', '.bdf']:
        raw = reader[ext](raw_fpath, **kwargs)

    # MEF and NWB are allowed, but not yet implemented
    elif ext in ['.mef', '.nwb']:
        raise ValueError(f'Got "{ext}" as extension. This is an allowed '
                         f'extension but there is no IO support for this '
                         f'file format yet.')

    # No supported data found ...
    # ---------------------------
    else:
        raise ValueError(f'Raw file name extension must be one '
                         f'of {ALLOWED_DATATYPE_EXTENSIONS}\n'
                         f'Got {ext}')
    return raw


def _handle_participants_reading(participants_fname, raw,
                                 subject, verbose=None):
    participants_tsv = _from_tsv(participants_fname)
    subjects = participants_tsv['participant_id']
    row_ind = subjects.index(subject)

    # set data from participants tsv into subject_info
    for infokey, infovalue in participants_tsv.items():
        if infokey == 'sex' or infokey == 'hand':
            value = _map_options(what=infokey, key=infovalue[row_ind],
                                 fro='bids', to='mne')
            # We don't know how to translate to MNE, so skip.
            if value is None:
                if infokey == 'sex':
                    info_str = 'subject sex'
                else:
                    info_str = 'subject handedness'
                warn(f'Unable to map `{infokey}` value to MNE. '
                     f'Not setting {info_str}.')
        else:
            value = infovalue[row_ind]
        # add data into raw.Info
        if raw.info['subject_info'] is None:
            raw.info['subject_info'] = dict()
        raw.info['subject_info'][infokey] = value

    return raw


def _handle_info_reading(sidecar_fname, raw, verbose=None):
    """Read associated sidecar.json and populate raw.

    Handle PowerLineFrequency of recording.
    """
    with open(sidecar_fname, "r") as fin:
        sidecar_json = json.load(fin)

    # read in the sidecar JSON's line frequency
    line_freq = sidecar_json.get("PowerLineFrequency")
    if line_freq == "n/a":
        line_freq = None

    if raw.info["line_freq"] is not None and line_freq is None:
        line_freq = raw.info["line_freq"]  # take from file is present

    if raw.info["line_freq"] is not None and line_freq is not None:
        # if both have a set Power Line Frequency, then
        # check that they are the same, else there is a
        # discrepency in the metadata of the dataset.
        if raw.info["line_freq"] != line_freq:
            raise ValueError("Line frequency in sidecar json does "
                             "not match the info datastructure of "
                             "the mne.Raw. "
                             "Raw is -> {} ".format(raw.info["line_freq"]),
                             "Sidecar JSON is -> {} ".format(line_freq))

    raw.info["line_freq"] = line_freq
    return raw


def _handle_events_reading(events_fname, raw):
    """Read associated events.tsv and populate raw.

    Handle onset, duration, and description of each event.
    """
    logger.info('Reading events from {}.'.format(events_fname))
    events_dict = _from_tsv(events_fname)

    # Get the descriptions of the events
    if 'trial_type' in events_dict:
        # Drop events unrelated to a trial type
        events_dict = _drop(events_dict, 'n/a', 'trial_type')
        descriptions = np.asarray(events_dict['trial_type'], dtype=str)

    # If we don't have a proper description of the events, perhaps we have
    # at least an event value?
    elif 'value' in events_dict:
        # Drop events unrelated to value
        events_dict = _drop(events_dict, 'n/a', 'value')
        descriptions = np.asarray(events_dict['value'], dtype=str)

    # Worst case, we go with 'n/a' for all events
    else:
        descriptions = 'n/a'

    # Deal with "n/a" strings before converting to float
    ons = [np.nan if on == 'n/a' else on for on in events_dict['onset']]
    dus = [0 if du == 'n/a' else du for du in events_dict['duration']]
    onsets = np.asarray(ons, dtype=float)
    durations = np.asarray(dus, dtype=float)

    # Keep only events where onset is known
    good_events_idx = ~np.isnan(onsets)
    onsets = onsets[good_events_idx]
    durations = durations[good_events_idx]
    descriptions = descriptions[good_events_idx]
    del good_events_idx

    # Add Events to raw as annotations
    annot_from_events = mne.Annotations(onset=onsets,
                                        duration=durations,
                                        description=descriptions,
                                        orig_time=None)
    raw.set_annotations(annot_from_events)
    return raw


def _get_bads_from_tsv_data(tsv_data):
    """Extract names of bads from data read from channels.tsv."""
    idx = []
    for ch_idx, status in enumerate(tsv_data['status']):
        if status.lower() == 'bad':
            idx.append(ch_idx)

    bads = [tsv_data['name'][i] for i in idx]
    return bads


def _handle_channels_reading(channels_fname, bids_fname, raw):
    """Read associated channels.tsv and populate raw.

    Updates status (bad) and types of channels.
    """
    logger.info('Reading channel info from {}.'.format(channels_fname))
    channels_dict = _from_tsv(channels_fname)

    # First, make sure that ordering of names in channels.tsv matches the
    # ordering of names in the raw data. The "name" column is mandatory in BIDS
    ch_names_raw = list(raw.ch_names)
    ch_names_tsv = channels_dict['name']
    if ch_names_raw != ch_names_tsv:

        msg = ('Channels do not correspond between raw data and the '
               'channels.tsv file. For MNE-BIDS, the channel names in the '
               'tsv MUST be equal and in the same order as the channels in '
               'the raw data.\n\n'
               '{} channels in tsv file: "{}"\n\n --> {}\n\n'
               '{} channels in raw file: "{}"\n\n --> {}\n\n'
               .format(len(ch_names_tsv), channels_fname, ch_names_tsv,
                       len(ch_names_raw), bids_fname, ch_names_raw)
               )

        # XXX: this could be due to MNE inserting a 'STI 014' channel as the
        # last channel: In that case, we can work. --> Can be removed soon,
        # because MNE will stop the synthesis of stim channels in the near
        # future
        if not (ch_names_raw[-1] == 'STI 014' and
                ch_names_raw[:-1] == ch_names_tsv):
            raise RuntimeError(msg)

    # Now we can do some work.
    # The "type" column is mandatory in BIDS. We can use it to set channel
    # types in the raw data using a mapping between channel types
    channel_type_dict = dict()

    # Get the best mapping we currently have from BIDS to MNE nomenclature
    bids_to_mne_ch_types = _get_ch_type_mapping(fro='bids', to='mne')
    ch_types_json = channels_dict['type']
    for ch_name, ch_type in zip(ch_names_tsv, ch_types_json):

        # Try to map from BIDS nomenclature to MNE, leave channel type
        # untouched if we are uncertain
        updated_ch_type = bids_to_mne_ch_types.get(ch_type, None)

        if updated_ch_type is None:
            # XXX Try again with uppercase spelling – this should be removed
            # XXX once https://github.com/bids-standard/bids-validator/issues/1018  # noqa:E501
            # XXX has been resolved.
            # XXX x-ref https://github.com/mne-tools/mne-bids/issues/481
            updated_ch_type = bids_to_mne_ch_types.get(ch_type.upper(), None)
            if updated_ch_type is not None:
                msg = ('The BIDS dataset contains channel types in lowercase '
                       'spelling. This violates the BIDS specification and '
                       'will raise an error in the future.')
                warn(msg)

        if updated_ch_type is not None:
            channel_type_dict[ch_name] = updated_ch_type

    # Set the channel types in the raw data according to channels.tsv
    raw.set_channel_types(channel_type_dict)

    # Check whether there is the optional "status" column from which to infer
    # good and bad channels
    if 'status' in channels_dict:
        # find bads from channels.tsv
        bads_from_tsv = _get_bads_from_tsv_data(channels_dict)

        if raw.info['bads'] and set(bads_from_tsv) != set(raw.info['bads']):
            warn(f'Encountered conflicting information on channel status '
                 f'between {op.basename(channels_fname)} and the associated '
                 f'raw data file.\n'
                 f'Channels marked as bad in '
                 f'{op.basename(channels_fname)}: {bads_from_tsv}\n'
                 f'Channels marked as bad in '
                 f'raw.info["bads"]: {raw.info["bads"]}\n'
                 f'Setting list of bad channels to: {bads_from_tsv}')

        raw.info['bads'] = bads_from_tsv
    elif raw.info['bads']:
        # We do have info['bads'], but no `status` in channels.tsv
        logger.info(f'No "status" column found in '
                    f'{op.basename(channels_fname)}; using list of bad '
                    f'channels found in raw.info["bads"]: {raw.info["bads"]}')

    return raw


[docs]def read_raw_bids(bids_path, extra_params=None, verbose=True): """Read BIDS compatible data. Will attempt to read associated events.tsv and channels.tsv files to populate the returned raw object with raw.annotations and raw.info['bads']. Parameters ---------- bids_path : BIDSPath The file to read. The :class:`mne_bids.BIDSPath` instance passed here **must** have the ``.root`` attribute set. The ``.datatype`` attribute **may** be set. If ``.datatype`` is not set and only one data type (e.g., only EEG or MEG data) is present in the dataset, it will be selected automatically. extra_params : None | dict Extra parameters to be passed to MNE read_raw_* functions. If a dict, for example: ``extra_params=dict(allow_maxshield=True)``. verbose : bool The verbosity level. Returns ------- raw : instance of Raw The data as MNE-Python Raw object. Raises ------ RuntimeError If multiple recording data types are present in the dataset, but ``datatype=None``. RuntimeError If more than one data files exist for the specified recording. RuntimeError If no data file in a supported format can be located. ValueError If the specified ``datatype`` cannot be found in the dataset. """ if not isinstance(bids_path, BIDSPath): raise RuntimeError('"bids_path" must be a BIDSPath object. Please ' 'instantiate using mne_bids.BIDSPath().') bids_path = bids_path.copy() sub = bids_path.subject ses = bids_path.session bids_root = bids_path.root datatype = bids_path.datatype suffix = bids_path.suffix # check root available if bids_root is None: raise ValueError('The root of the "bids_path" must be set. ' 'Please use `bids_path.update(root="<root>")` ' 'to set the root of the BIDS folder to read.') # infer the datatype and suffix if they are not present in the BIDSPath if datatype is None: datatype = _infer_datatype(root=bids_root, sub=sub, ses=ses) bids_path.update(datatype=datatype) if suffix is None: bids_path.update(suffix=datatype) data_dir = bids_path.directory bids_fname = bids_path.fpath.name if op.splitext(bids_fname)[1] == '.pdf': bids_raw_folder = op.join(data_dir, f'{bids_path.basename}') bids_fpath = glob.glob(op.join(bids_raw_folder, 'c,rf*'))[0] config = op.join(bids_raw_folder, 'config') else: bids_fpath = op.join(data_dir, bids_fname) config = None if extra_params is None: extra_params = dict() raw = _read_raw(bids_fpath, electrode=None, hsp=None, hpi=None, config=config, verbose=None, **extra_params) # Try to find an associated events.tsv to get information about the # events in the recorded data events_fname = _find_matching_sidecar(bids_path, suffix='events', extension='.tsv', on_error='warn') if events_fname is not None: raw = _handle_events_reading(events_fname, raw) # Try to find an associated channels.tsv to get information about the # status and type of present channels channels_fname = _find_matching_sidecar(bids_path, suffix='channels', extension='.tsv', on_error='warn') if channels_fname is not None: raw = _handle_channels_reading(channels_fname, bids_fname, raw) # Try to find an associated electrodes.tsv and coordsystem.json # to get information about the status and type of present channels on_error = 'warn' if suffix == 'ieeg' else 'ignore' electrodes_fname = _find_matching_sidecar(bids_path, suffix='electrodes', extension='.tsv', on_error=on_error) coordsystem_fname = _find_matching_sidecar(bids_path, suffix='coordsystem', extension='.json', on_error='warn') if electrodes_fname is not None: if coordsystem_fname is None: raise RuntimeError(f"BIDS mandates that the coordsystem.json " f"should exist if electrodes.tsv does. " f"Please create coordsystem.json for" f"{bids_path.basename}") if datatype in ['meg', 'eeg', 'ieeg']: raw = _read_dig_bids(electrodes_fname, coordsystem_fname, raw, datatype, verbose) # Try to find an associated sidecar .json to get information about the # recording snapshot sidecar_fname = _find_matching_sidecar(bids_path, suffix=datatype, extension='.json', on_error='warn') if sidecar_fname is not None: raw = _handle_info_reading(sidecar_fname, raw, verbose=verbose) # read in associated subject info from participants.tsv participants_tsv_fpath = op.join(bids_root, 'participants.tsv') subject = f"sub-{bids_path.subject}" if op.exists(participants_tsv_fpath): raw = _handle_participants_reading(participants_tsv_fpath, raw, subject, verbose=verbose) else: warn("Participants file not found for {}... Not reading " "in any particpants.tsv data.".format(bids_fname)) return raw
[docs]def get_head_mri_trans(bids_path): """Produce transformation matrix from MEG and MRI landmark points. Will attempt to read the landmarks of Nasion, LPA, and RPA from the sidecar files of (i) the MEG and (ii) the T1 weighted MRI data. The two sets of points will then be used to calculate a transformation matrix from head coordinates to MRI coordinates. Parameters ---------- bids_path : BIDSPath The path of the recording for which to retrieve the transformation. The :class:`mne_bids.BIDSPath` instance passed here **must** have the ``.root`` attribute set. Returns ------- trans : instance of mne.transforms.Transform The data transformation matrix from head to MRI coordinates """ if not has_nibabel(): # pragma: no cover raise ImportError('This function requires nibabel.') import nibabel as nib if not isinstance(bids_path, BIDSPath): raise RuntimeError('"bids_path" must be a BIDSPath object. Please ' 'instantiate using mne_bids.BIDSPath().') # check root available bids_path = bids_path.copy() bids_root = bids_path.root if bids_root is None: raise ValueError('The root of the "bids_path" must be set. ' 'Please use `bids_path.update(root="<root>")` ' 'to set the root of the BIDS folder to read.') # only get this for MEG data bids_path.update(datatype='meg') # Get the sidecar file for MRI landmarks bids_fname = bids_path.update(suffix='meg', root=bids_root) t1w_json_path = _find_matching_sidecar(bids_fname, suffix='T1w', extension='.json') # Get MRI landmarks from the JSON sidecar with open(t1w_json_path, 'r') as f: t1w_json = json.load(f) mri_coords_dict = t1w_json.get('AnatomicalLandmarkCoordinates', dict()) mri_landmarks = np.asarray((mri_coords_dict.get('LPA', np.nan), mri_coords_dict.get('NAS', np.nan), mri_coords_dict.get('RPA', np.nan))) if np.isnan(mri_landmarks).any(): raise RuntimeError('Could not parse T1w sidecar file: "{}"\n\n' 'The sidecar file MUST contain a key ' '"AnatomicalLandmarkCoordinates" pointing to a ' 'dict with keys "LPA", "NAS", "RPA". ' 'Yet, the following structure was found:\n\n"{}"' .format(t1w_json_path, t1w_json)) # The MRI landmarks are in "voxels". We need to convert the to the # neuromag RAS coordinate system in order to compare the with MEG landmarks # see also: `mne_bids.write.write_anat` t1w_path = t1w_json_path.replace('.json', '.nii') if not op.exists(t1w_path): t1w_path += '.gz' # perhaps it is .nii.gz? ... else raise an error if not op.exists(t1w_path): raise RuntimeError('Could not find the T1 weighted MRI associated ' 'with "{}". Tried: "{}" but it does not exist.' .format(t1w_json_path, t1w_path)) t1_nifti = nib.load(t1w_path) # Convert to MGH format to access vox2ras method t1_mgh = nib.MGHImage(t1_nifti.dataobj, t1_nifti.affine) # now extract transformation matrix and put back to RAS coordinates of MRI vox2ras_tkr = t1_mgh.header.get_vox2ras_tkr() mri_landmarks = apply_trans(vox2ras_tkr, mri_landmarks) mri_landmarks = mri_landmarks * 1e-3 # Get MEG landmarks from the raw file _, ext = _parse_ext(bids_fname) extra_params = None if ext == '.fif': extra_params = dict(allow_maxshield=True) raw = read_raw_bids(bids_path=bids_path, extra_params=extra_params) meg_coords_dict = _extract_landmarks(raw.info['dig']) meg_landmarks = np.asarray((meg_coords_dict['LPA'], meg_coords_dict['NAS'], meg_coords_dict['RPA'])) # Given the two sets of points, fit the transform trans_fitted = fit_matched_points(src_pts=meg_landmarks, tgt_pts=mri_landmarks) trans = mne.transforms.Transform(fro='head', to='mri', trans=trans_fitted) return trans