02. Convert MNE sample data to BIDS format

In this example we will use MNE-BIDS to organize the MNE sample data according to the BIDS standard. In a second step we will read the organized dataset using MNE-BIDS.

# Authors: Mainak Jas <mainak.jas@telecom-paristech.fr>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Teon Brooks <teon.brooks@gmail.com>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#          Richard Höchenberger <richard.hoechenberger@gmail.com>
#
# License: BSD (3-clause)

First we import some basic Python libraries, followed by MNE-Python and its sample data, and then finally the MNE-BIDS functions we need for this example

import os.path as op
import shutil

import mne
from mne.datasets import sample

from mne_bids import (write_raw_bids, read_raw_bids, write_meg_calibration,
                      write_meg_crosstalk, BIDSPath, print_dir_tree)
from mne_bids.stats import count_events

Now we can read the MNE sample data. We define an event_id based on our knowledge of the data, to give meaning to events in the data.

With raw_fname and events_data, we determine where to get the sample data from. output_path determines where we will write the BIDS conversion to.

data_path = sample.data_path()
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3,
            'Visual/Right': 4, 'Smiley': 5, 'Button': 32}

raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif')
events_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-eve.fif')
output_path = op.join(data_path, '..', 'MNE-sample-data-bids')

To ensure the output path doesn’t contain any leftover files from previous tests and example runs, we simply delete it.

Warning

Do not delete directories that may contain important data!

Note

mne-bids will try to infer as much information from the data as possible to then save this data in BIDS-specific “sidecar” files. For example the manufacturer information, which is inferred from the data file extension. However, sometimes inferring is ambiguous (e.g., if your file format is non-standard for the manufacturer). In these cases, MNE-BIDS does not guess and you will have to update your BIDS fields manually.

Based on our path definitions above, we read the raw data file, define a new BIDS name for it, and then run the automatic BIDS conversion.

raw = mne.io.read_raw_fif(raw_fname)
raw.info['line_freq'] = 60  # specify power line frequency as required by BIDS

bids_path = BIDSPath(subject='01', session='01',
                     task='audiovisual', run='01', root=output_path)
write_raw_bids(raw, bids_path, events_data=events_data,
               event_id=event_id, overwrite=True)

Out:

Opening raw data file /Users/hoechenberger/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
    Read a total of 3 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
    Range : 25800 ... 192599 =     42.956 ...   320.670 secs
Ready.
Opening raw data file /Users/hoechenberger/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
    Read a total of 3 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
    Range : 25800 ... 192599 =     42.956 ...   320.670 secs
Ready.

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/README'...

References
----------
Appelhoff, S., Sanderson, M., Brooks, T., Vliet, M., Quentin, R., Holdgraf, C., Chaumon, M., Mikulan, E., Tavabi, K., Höchenberger, R., Welke, D., Brunner, C., Rockhill, A., Larson, E., Gramfort, A. and Jas, M. (2019). MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software 4: (1896). https://doi.org/10.21105/joss.01896

Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., Henson, R. N., Jas, M., Litvak, V., Moreau, J., Oostenveld, R., Schoffelen, J., Tadel, F., Wexler, J., Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5, 180110. https://doi.org/10.1038/sdata.2018.110


Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.tsv'...

participant_id  age     sex     hand
sub-01  n/a     n/a     n/a

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.json'...

{
    "participant_id": {
        "Description": "Unique participant identifier"
    },
    "age": {
        "Description": "Age of the participant at time of testing",
        "Units": "years"
    },
    "sex": {
        "Description": "Biological sex of the participant",
        "Levels": {
            "F": "female",
            "M": "male"
        }
    },
    "hand": {
        "Description": "Handedness of the participant",
        "Levels": {
            "R": "right",
            "L": "left",
            "A": "ambidextrous"
        }
    }
}

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_coordsystem.json'...

{
    "MEGCoordinateSystem": "ElektaNeuromag",
    "MEGCoordinateUnits": "m",
    "MEGCoordinateSystemDescription": "RAS orientation and the origin between the ears",
    "HeadCoilCoordinates": {
        "NAS": [
            3.725290298461914e-09,
            0.10260561108589172,
            4.190951585769653e-09
        ],
        "LPA": [
            -0.07137660682201385,
            0.0,
            5.122274160385132e-09
        ],
        "RPA": [
            0.07526767998933792,
            0.0,
            5.587935447692871e-09
        ],
        "coil1": [
            0.032922741025686264,
            0.09897983074188232,
            0.07984329760074615
        ],
        "coil2": [
            -0.06998106092214584,
            0.06771647930145264,
            0.06888450682163239
        ],
        "coil3": [
            -0.07260829955339432,
            -0.02086828649044037,
            0.0971473976969719
        ],
        "coil4": [
            0.04996863007545471,
            -0.007233052980154753,
            0.1228904277086258
        ]
    },
    "HeadCoilCoordinateSystem": "ElektaNeuromag",
    "HeadCoilCoordinateUnits": "m"
}

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_events.tsv'...

onset   duration        trial_type      value   sample
3.6246181587150867      0.0     Auditory/Right  2       2177
4.237323479067476       0.0     Visual/Left     5       2545
4.946596485779753       0.0     Auditory/Left   1       2971
5.692498614904401       0.0     Visual/Right    6       3419
6.41342634238425        0.0     Auditory/Right  2       3852

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/dataset_description.json'...

{
    "Name": " ",
    "BIDSVersion": "1.4.0",
    "DatasetType": "raw",
    "Authors": [
        "Please cite MNE-BIDS in your publication before removing this (citations in README)"
    ]
}
Reading 0 ... 166799  =      0.000 ...   277.714 secs...

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.json'...

{
    "TaskName": "audiovisual",
    "Manufacturer": "Elekta",
    "PowerLineFrequency": 60,
    "SamplingFrequency": 600.614990234375,
    "SoftwareFilters": "n/a",
    "RecordingDuration": 277.7136813300495,
    "RecordingType": "continuous",
    "DewarPosition": "n/a",
    "DigitizedLandmarks": false,
    "DigitizedHeadPoints": false,
    "MEGChannelCount": 306,
    "MEGREFChannelCount": 0,
    "EEGChannelCount": 60,
    "EOGChannelCount": 1,
    "ECGChannelCount": 0,
    "EMGChannelCount": 0,
    "MiscChannelCount": 0,
    "TriggerChannelCount": 9
}

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_channels.tsv'...

name    type    units   low_cutoff      high_cutoff     description     sampling_frequency      status  status_description
MEG 0113        MEGGRADPLANAR   T/m     0.10000000149011612     172.17630004882812      Planar Gradiometer      600.614990234375        good    n/a
MEG 0112        MEGGRADPLANAR   T/m     0.10000000149011612     172.17630004882812      Planar Gradiometer      600.614990234375        good    n/a
MEG 0111        MEGMAG  T       0.10000000149011612     172.17630004882812      Magnetometer    600.614990234375        good    n/a
MEG 0122        MEGGRADPLANAR   T/m     0.10000000149011612     172.17630004882812      Planar Gradiometer      600.614990234375        good    n/a
MEG 0123        MEGGRADPLANAR   T/m     0.10000000149011612     172.17630004882812      Planar Gradiometer      600.614990234375        good    n/a
Copying data files to sub-01_ses-01_task-audiovisual_run-01_meg.fif
Reserving possible split file sub-01_ses-01_task-audiovisual_run-01_split-01_meg.fif
Writing /Users/hoechenberger/mne_data/MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif
Closing /Users/hoechenberger/mne_data/MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif
[done]

Writing '/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/sub-01_ses-01_scans.tsv'...

filename        acq_time
meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif       2002-12-03T19:01:10.720100Z
Wrote /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/sub-01_ses-01_scans.tsv entry with meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif.

BIDSPath(
root: /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids
datatype: meg
basename: sub-01_ses-01_task-audiovisual_run-01_meg.fif)

The sample MEG dataset comes with fine-calibration and crosstalk files that are required when processing Elekta/Neuromag/MEGIN data using MaxFilter®. Let’s store these data in appropriate places, too.

Out:

Writing fine-calibration file to /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_acq-calibration_meg.dat
Writing crosstalk file to /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_acq-crosstalk_meg.fif

Now let’s see the structure of the BIDS folder we created.

Out:

|MNE-sample-data-bids/
|--- README
|--- dataset_description.json
|--- participants.json
|--- participants.tsv
|--- sub-01/
|------ ses-01/
|--------- sub-01_ses-01_scans.tsv
|--------- meg/
|------------ sub-01_ses-01_acq-calibration_meg.dat
|------------ sub-01_ses-01_acq-crosstalk_meg.fif
|------------ sub-01_ses-01_coordsystem.json
|------------ sub-01_ses-01_task-audiovisual_run-01_channels.tsv
|------------ sub-01_ses-01_task-audiovisual_run-01_events.tsv
|------------ sub-01_ses-01_task-audiovisual_run-01_meg.fif
|------------ sub-01_ses-01_task-audiovisual_run-01_meg.json

Now let’s get an overview of the events on the whole dataset

counts = count_events(output_path)
counts
audiovisual
trial_type Auditory/Left Auditory/Right Button Smiley Visual/Left Visual/Right
subject session run
01 01 01 72 73 16 15 73 71


A big advantage of having data organized according to BIDS is that software packages can automate your workflow. For example, reading the data back into MNE-Python can easily be done using read_raw_bids().

Out:

Opening raw data file /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif...
    Read a total of 3 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
    Range : 25800 ... 192599 =     42.956 ...   320.670 secs
Ready.
Reading events from /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_events.tsv.
Reading channel info from /Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_channels.tsv.
/Users/hoechenberger/Development/mne-bids/mne_bids/read.py:339: RuntimeWarning: The unit for channel(s) STI 001, STI 002, STI 003, STI 004, STI 005, STI 006, STI 014, STI 015, STI 016 has changed from V to NA.
  raw.set_channel_types(channel_type_dict)

The resulting data is already in a convenient form to create epochs and evoked data.

EEG (59 channels), Gradiometers (203 channels), Magnetometers (102 channels)

Out:

Used Annotations descriptions: ['Auditory/Left', 'Auditory/Right', 'Button', 'Smiley', 'Visual/Left', 'Visual/Right']
Not setting metadata
Not setting metadata
320 matching events found
Setting baseline interval to [-0.19979521315838786, 0.0] sec
Applying baseline correction (mode: mean)
Created an SSP operator (subspace dimension = 3)
3 projection items activated

<Figure size 640x500 with 3 Axes>

It is trivial to retrieve the path of the fine-calibration and crosstalk files, too.

Out:

/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_acq-calibration_meg.dat
/Users/hoechenberger/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_acq-crosstalk_meg.fif

The README created by write_raw_bids() also takes care of the citation for mne-bids. If you are preparing a manuscript, please make sure to also cite MNE-BIDS there.

readme = op.join(output_path, 'README')
with open(readme, 'r', encoding='utf-8-sig') as fid:
    text = fid.read()
print(text)

Out:

References
----------
Appelhoff, S., Sanderson, M., Brooks, T., Vliet, M., Quentin, R., Holdgraf, C., Chaumon, M., Mikulan, E., Tavabi, K., Höchenberger, R., Welke, D., Brunner, C., Rockhill, A., Larson, E., Gramfort, A. and Jas, M. (2019). MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software 4: (1896). https://doi.org/10.21105/joss.01896

Niso, G., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort, A., Henson, R. N., Jas, M., Litvak, V., Moreau, J., Oostenveld, R., Schoffelen, J., Tadel, F., Wexler, J., Baillet, S. (2018). MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 5, 180110. https://doi.org/10.1038/sdata.2018.110

Total running time of the script: ( 0 minutes 3.913 seconds)

Gallery generated by Sphinx-Gallery