Source code for mne_bids.stats

"""Some functions to extract stats from a BIDS dataset."""

# Authors: Alex Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause


from mne_bids import BIDSPath, get_datatypes
from mne_bids.config import EPHY_ALLOWED_DATATYPES


[docs]def count_events(root_or_path, datatype='auto'): """Count events present in dataset. Parameters ---------- root_or_path : path-like | mne_bids.BIDSPath If str or Path it is the root folder of the BIDS dataset. If a BIDSPath is passed it allows to limit the count to a subject, a session or a run by only considering the event files that match this BIDSPath. datatype : str Type of the data recording. Can be ``meg``, ``eeg``, ``ieeg`` or ``auto``. If ``auto`` and a :class:`mne_bids.BIDSPath` isinstance is passed as ``root_or_path`` which has a ``datatype`` attribute set, then this data type will be used. Otherwise, only one data type should be present in the dataset to avoid any ambiguity. Returns ------- counts : pandas.DataFrame The pandas dataframe containing all the counts of trial_type in all matching events.tsv files. """ import pandas as pd if not isinstance(root_or_path, BIDSPath): bids_path = BIDSPath(root=root_or_path) else: bids_path = root_or_path.copy() bids_path.update(suffix='events', extension='tsv') datatypes = get_datatypes(bids_path.root) this_datatypes = list(set(datatypes).intersection(EPHY_ALLOWED_DATATYPES)) if (datatype == 'auto') and (bids_path.datatype is not None): datatype = bids_path.datatype if datatype == 'auto': if len(this_datatypes) > 1: raise ValueError(f'Multiple datatypes present ({this_datatypes}).' f' You need to specity datatype got: {datatype})') elif len(this_datatypes) == 0: raise ValueError('No valid datatype present.') datatype = this_datatypes[0] if datatype not in EPHY_ALLOWED_DATATYPES: raise ValueError(f'datatype ({datatype}) is not supported. ' f'It must be one of: {EPHY_ALLOWED_DATATYPES})') bids_path.update(datatype=datatype) tasks = sorted(set([bp.task for bp in bids_path.match()])) all_counts = [] for task in tasks: bids_path.update(task=task) all_df = [] for bp in bids_path.match(): df = pd.read_csv(str(bp), delimiter='\t') df['subject'] = bp.subject if bp.session is not None: df['session'] = bp.session if bp.run is not None: df['run'] = bp.run all_df.append(df) if not all_df: continue df = pd.concat(all_df) groups = ['subject'] if bp.session is not None: groups.append('session') if bp.run is not None: groups.append('run') if 'stim_type' in df.columns: # Deal with some old files that use stim_type rather than # trial_type df = df.rename(columns={"stim_type": "trial_type"}) # There are datasets out there without a `trial_type` or `stim_type` # column. if 'trial_type' in df.columns: groups.append('trial_type') counts = df.groupby(groups).size() counts = counts.unstack() if 'BAD_ACQ_SKIP' in counts.columns: counts = counts.drop('BAD_ACQ_SKIP', axis=1) counts.columns = pd.MultiIndex.from_arrays( [[task] * counts.shape[1], counts.columns] ) all_counts.append(counts) if not all_counts: raise ValueError('No events files found.') counts = pd.concat(all_counts, axis=1) return counts