Source code for mne_connectivity.spectral.time

# Authors: Adam Li <adam2392@gmail.com>
#          Santeri Ruuskanen <santeriruuskanen@gmail.com>
#          Thomas S. Binns <t.s.binns@outlook.com>
#
# License: BSD (3-clause)

import inspect

import numpy as np
import xarray as xr
from mne.epochs import BaseEpochs
from mne.parallel import parallel_func
from mne.time_frequency import dpss_windows, tfr_array_morlet, tfr_array_multitaper
from mne.utils import _validate_type, logger, verbose

from ..base import EpochSpectralConnectivity, SpectralConnectivity
from ..utils import _check_multivariate_indices, check_indices, fill_doc
from .epochs import _compute_freq_mask
from .epochs_multivariate import (
    _CON_METHOD_MAP_MULTIVARIATE,
    _check_rank_input,
    _gc_methods,
    _multivariate_methods,
    _patterns_methods,
)
from .smooth import _create_kernel, _smooth_spectra


[docs] @verbose @fill_doc def spectral_connectivity_time( data, freqs, method="coh", average=False, indices=None, sfreq=None, fmin=None, fmax=None, fskip=0, faverage=False, sm_times=0, sm_freqs=1, sm_kernel="hanning", padding=0, mode="cwt_morlet", mt_bandwidth=None, n_cycles=7, gc_n_lags=40, rank=None, decim=1, n_jobs=1, verbose=None, ): r"""Compute time-frequency-domain connectivity measures. This function computes spectral connectivity over time from epoched data. The data may consist of a single epoch. The connectivity method(s) are specified using the ``method`` parameter. All methods are based on time-resolved estimates of the cross- and power spectral densities (CSD/PSD) Sxy and Sxx, Syy. Parameters ---------- data : array_like, shape (n_epochs, n_signals, n_times) | Epochs The data from which to compute connectivity. freqs : array_like Array of frequencies of interest for time-frequency decomposition. Only the frequencies within the range specified by ``fmin`` and ``fmax`` are used. method : str | list of str Connectivity measure(s) to compute. These can be ``['coh', 'cacoh', 'mic', 'mim', 'plv', 'ciplv', 'pli', 'wpli', 'gc', 'gc_tr']``. These are: * %(coh)s * %(cacoh)s * %(mic)s * %(mim)s * %(plv)s * %(ciplv)s * %(pli)s * %(wpli)s * %(gc)s * %(gc_tr)s Multivariate methods (``['cacoh', 'mic', 'mim', 'gc', 'gc_tr']``) cannot be called with the other methods. average : bool Average connectivity scores over epochs. If ``True``, output will be an instance of :class:`SpectralConnectivity`, otherwise :class:`EpochSpectralConnectivity`. indices : tuple of array_like | None Two arrays with indices of connections for which to compute connectivity. If a bivariate method is called, each array for the seeds and targets should contain the channel indices for the each bivariate connection. If a multivariate method is called, each array for the seeds and targets should consist of nested arrays containing the channel indices for each multivariate connection. If None, connections between all channels are computed, unless a Granger causality method is called, in which case an error is raised. sfreq : float The sampling frequency. Required if data is not :class:`Epochs <mne.Epochs>`. fmin : float | tuple of float | None The lower frequency of interest. Multiple bands are defined using a tuple, e.g., ``(8., 20.)`` for two bands with 8 Hz and 20 Hz lower bounds. If `None`, the lowest frequency in ``freqs`` is used. fmax : float | tuple of float | None The upper frequency of interest. Multiple bands are defined using a tuple, e.g. ``(13., 30.)`` for two band with 13 Hz and 30 Hz upper bounds. If `None`, the highest frequency in ``freqs`` is used. fskip : int Omit every ``(fskip + 1)``-th frequency bin to decimate in frequency domain. faverage : bool Average connectivity scores for each frequency band. If `True`, the output ``freqs`` will be an array of the median frequencies of each band. sm_times : float Amount of time to consider for the temporal smoothing in seconds. If zero, no temporal smoothing is applied. sm_freqs : int Number of points for frequency smoothing. By default, 1 is used which is equivalent to no smoothing. sm_kernel : {'square', 'hanning'} Smoothing kernel type. Choose either 'square' or 'hanning'. padding : float Amount of time to consider as padding at the beginning and end of each epoch in seconds. See Notes for more information. mode : str Time-frequency decomposition method. Can be either: 'multitaper', or 'cwt_morlet'. See :func:`mne.time_frequency.tfr_array_multitaper` and :func:`mne.time_frequency.tfr_array_morlet` for reference. mt_bandwidth : float | None Product between the temporal window length (in seconds) and the full frequency bandwidth (in Hz). This product can be seen as the surface of the window on the time/frequency plane and controls the frequency bandwidth (thus the frequency resolution) and the number of good tapers. See :func:`mne.time_frequency.tfr_array_multitaper` documentation. n_cycles : float | array_like of float Number of cycles in the wavelet, either a fixed number or one per frequency. The number of cycles ``n_cycles`` and the frequencies of interest ``cwt_freqs`` define the temporal window length. For details, see :func:`mne.time_frequency.tfr_array_morlet` documentation. gc_n_lags : int Number of lags to use for the vector autoregressive model when computing Granger causality. Higher values increase computational cost, but reduce the degree of spectral smoothing in the results. Only used if ``method`` contains any of ``['gc', 'gc_tr']``. rank : tuple of array | None Two arrays with the rank to project the seed and target data to, respectively, using singular value decomposition. If `None`, the rank of the data is computed and projected to. Only used if ``method`` contains any of ``['cacoh', 'mic', 'mim', 'gc', 'gc_tr']``. decim : int To reduce memory usage, decimation factor after time-frequency decomposition. Returns ``tfr[…, ::decim]``. n_jobs : int Number of connections to compute in parallel. Memory mapping must be activated. Please see the Notes section for details. %(verbose)s Returns ------- con : instance of Connectivity | list Computed connectivity measure(s). An instance of :class:`EpochSpectralConnectivity`, :class:`SpectralConnectivity` or a list of instances corresponding to connectivity measures if several connectivity measures are specified. The shape of each connectivity dataset is (n_epochs, n_cons, n_freqs). When "indices" is None and a bivariate method is called, "n_cons = n_signals ** 2", or if a multivariate method is called "n_cons = 1". When "indices" is specified, "n_con = len(indices[0])" for bivariate and multivariate methods. See Also -------- mne_connectivity.spectral_connectivity_epochs mne_connectivity.SpectralConnectivity mne_connectivity.EpochSpectralConnectivity Notes ----- Please note that the interpretation of the measures in this function depends on the data and underlying assumptions and does not necessarily reflect a causal relationship between brain regions. The connectivity measures are computed over time within each epoch and optionally averaged over epochs. High connectivity values indicate that the phase coupling (interpreted as estimated connectivity) differences between signals stay consistent over time. The spectral densities can be estimated using a multitaper method with digital prolate spheroidal sequence (DPSS) windows, or a continuous wavelet transform using Morlet wavelets. The spectral estimation mode is specified using the ``mode`` parameter. When using the multitaper spectral estimation method, the cross-spectral density is computed separately for each taper and aggregated using a weighted average, where the weights correspond to the concentration ratios between the DPSS windows. Spectral estimation using multitaper or Morlet wavelets introduces edge effects that depend on the length of the wavelet. To remove edge effects, the parameter ``padding`` can be used to prune the edges of the signal. Please see the documentation of :func:`mne.time_frequency.tfr_array_multitaper` and :func:`mne.time_frequency.tfr_array_morlet` for details on wavelet length (i.e., time window length). By default, the connectivity between all signals is computed (only connections corresponding to the lower-triangular part of the connectivity matrix). If one is only interested in the connectivity between some signals, the "indices" parameter can be used. For example, to compute the connectivity between the signal with index 0 and signals "2, 3, 4" (a total of 3 connections) one can use the following:: indices = (np.array([0, 0, 0]), # row indices np.array([2, 3, 4])) # col indices con = spectral_connectivity_time(data, method='coh', indices=indices, ...) In this case ``con.get_data().shape = (3, n_freqs)``. The connectivity scores are in the same order as defined indices. For multivariate methods, this is handled differently. If "indices" is None, connectivity between all signals will be computed and a single connectivity spectrum will be returned (this is not possible if a Granger causality method is called). If "indices" is specified, seed and target indices for each connection should be specified as nested array-likes. For example, to compute the connectivity between signals (0, 1) -> (2, 3) and (0, 1) -> (4, 5), indices should be specified as:: indices = (np.array([[0, 1], [0, 1]]), # seeds np.array([[2, 3], [4, 5]])) # targets More information on working with multivariate indices and handling connections where the number of seeds and targets are not equal can be found in the :doc:`../auto_examples/handling_ragged_arrays` example. **Supported Connectivity Measures** The connectivity method(s) is specified using the ``method`` parameter. The following methods are supported (note: ``E[]`` denotes average over epochs). Multiple measures can be computed at once by using a list/tuple, e.g., ``['coh', 'pli']`` to compute coherence and PLI. 'coh' : Coherence given by:: | E[Sxy] | C = --------------------- sqrt(E[Sxx] * E[Syy]) 'cacoh' : Canonical Coherency (CaCoh) :footcite:`VidaurreEtAl2019` given by: :math:`\textrm{CaCoh}=\Large{\frac{\boldsymbol{a}^T\boldsymbol{D} (\Phi)\boldsymbol{b}}{\sqrt{\boldsymbol{a}^T\boldsymbol{a} \boldsymbol{b}^T\boldsymbol{b}}}}` where: :math:`\boldsymbol{D}(\Phi)` is the cross-spectral density between seeds and targets transformed for a given phase angle :math:`\Phi`; and :math:`\boldsymbol{a}` and :math:`\boldsymbol{b}` are eigenvectors for the seeds and targets, such that :math:`\boldsymbol{a}^T\boldsymbol{D}(\Phi)\boldsymbol{b}` maximises coherency between the seeds and targets. Taking the absolute value of the results gives maximised coherence. 'mic' : Maximised Imaginary part of Coherency (MIC) :footcite:`EwaldEtAl2012` given by: :math:`\textrm{MIC}=\Large{\frac{\boldsymbol{\alpha}^T \boldsymbol{E \beta}}{\parallel\boldsymbol{\alpha}\parallel \parallel\boldsymbol{\beta}\parallel}}` where: :math:`\boldsymbol{E}` is the imaginary part of the transformed cross-spectral density between seeds and targets; and :math:`\boldsymbol{\alpha}` and :math:`\boldsymbol{\beta}` are eigenvectors for the seeds and targets, such that :math:`\boldsymbol{\alpha}^T \boldsymbol{E \beta}` maximises the imaginary part of coherency between the seeds and targets. 'mim' : Multivariate Interaction Measure (MIM) :footcite:`EwaldEtAl2012` given by: :math:`\textrm{MIM}=tr(\boldsymbol{EE}^T)` where :math:`\boldsymbol{E}` is the imaginary part of the transformed cross-spectral density between seeds and targets. 'plv' : Phase-Locking Value (PLV) :footcite:`LachauxEtAl1999` given by:: PLV = |E[Sxy/|Sxy|]| 'ciplv' : Corrected imaginary PLV (ciPLV) :footcite:`BrunaEtAl2018` given by:: |E[Im(Sxy/|Sxy|)]| ciPLV = ------------------------------------ sqrt(1 - |E[real(Sxy/|Sxy|)]| ** 2) 'pli' : Phase Lag Index (PLI) :footcite:`StamEtAl2007` given by:: PLI = |E[sign(Im(Sxy))]| 'wpli' : Weighted Phase Lag Index (WPLI) :footcite:`VinckEtAl2011` given by:: |E[Im(Sxy)]| WPLI = ------------------ E[|Im(Sxy)|] 'gc' : State-space Granger Causality (GC) :footcite:`BarnettSeth2015` given by: :math:`GC = ln\Large{(\frac{\lvert\boldsymbol{S}_{tt}\rvert}{\lvert \boldsymbol{S}_{tt}-\boldsymbol{H}_{ts}\boldsymbol{\Sigma}_{ss \lvert t}\boldsymbol{H}_{ts}^*\rvert}})` where: :math:`s` and :math:`t` represent the seeds and targets, respectively; :math:`\boldsymbol{H}` is the spectral transfer function; :math:`\boldsymbol{\Sigma}` is the residuals matrix of the autoregressive model; and :math:`\boldsymbol{S}` is :math:`\boldsymbol{\Sigma}` transformed by :math:`\boldsymbol{H}`. 'gc_tr' : State-space GC on time-reversed signals :footcite:`BarnettSeth2015,WinklerEtAl2016` given by the same equation as for 'gc', but where the autocovariance sequence from which the autoregressive model is produced is transposed to mimic the reversal of the original signal in time :footcite:`HaufeEtAl2012`. Parallel computation can be activated by setting the ``n_jobs`` parameter. Under the hood, this utilizes the ``joblib`` library. For effective parallelization, you should activate memory mapping in MNE-Python by setting ``MNE_MEMMAP_MIN_SIZE`` and ``MNE_CACHE_DIR``. Activating memory mapping will make ``joblib`` store arrays greater than the minimum size on disc, and forego direct RAM access for more efficient processing. For example, in your code, run mne.set_config('MNE_MEMMAP_MIN_SIZE', '10M') mne.set_config('MNE_CACHE_DIR', '/dev/shm') When ``MNE_MEMMAP_MIN_SIZE=None``, the underlying joblib implementation results in pickling and unpickling the whole array each time a pair of indices is accessed, which is slow, compared to memory mapping the array. This function is based on the ``frites.conn.conn_spec`` implementation in Frites. .. versionadded:: 0.3 References ---------- .. footbibliography:: """ events = None event_id = None # extract data from Epochs object _validate_type(data, (np.ndarray, BaseEpochs), "`data`", "Epochs or a NumPy array") if isinstance(data, BaseEpochs): names = data.ch_names sfreq = data.info["sfreq"] events = data.events event_id = data.event_id # Extract metadata from the Epochs data structure. # Make Annotations persist through by adding them to the metadata. metadata = data.metadata if metadata is None: annots_in_metadata = False else: annots_in_metadata = all( name not in metadata.columns for name in ["annot_onset", "annot_duration", "annot_description"] ) if hasattr(data, "annotations") and not annots_in_metadata: data.add_annotations_to_metadata(overwrite=True) metadata = data.metadata # XXX: remove logic once support for mne<1.6 is dropped kwargs = dict() if "copy" in inspect.getfullargspec(data.get_data).kwonlyargs: kwargs["copy"] = False data = data.get_data(**kwargs) n_epochs, n_signals, n_times = data.shape else: data = np.asarray(data) n_epochs, n_signals, n_times = data.shape names = np.arange(0, n_signals) metadata = None if sfreq is None: raise ValueError( "Sampling frequency (sfreq) is required with " "array input." ) # check that method is a list if isinstance(method, str): method = [method] # defaults for fmin and fmax if fmin is None: fmin = np.min(freqs) logger.info("Fmin was not specified. Using fmin=min(freqs)") if fmax is None: fmax = np.max(freqs) logger.info("Fmax was not specified. Using fmax=max(freqs).") fmin = np.array((fmin,), dtype=float).ravel() fmax = np.array((fmax,), dtype=float).ravel() if len(fmin) != len(fmax): raise ValueError("fmin and fmax must have the same length") if np.any(fmin > fmax): raise ValueError("fmax must be larger than fmin") if len(fmin) != 1 and any(this_method in _gc_methods for this_method in method): raise ValueError( "computing Granger causality on multiple frequency " "bands is not yet supported" ) if any(this_method in _multivariate_methods for this_method in method): if not all(this_method in _multivariate_methods for this_method in method): raise ValueError( "bivariate and multivariate connectivity methods cannot be " "used in the same function call" ) multivariate_con = True else: multivariate_con = False # convert kernel width in time to samples if isinstance(sm_times, (int, float)): sm_times = int(np.round(sm_times * sfreq)) # convert frequency smoothing from hz to samples if isinstance(sm_freqs, (int, float)): sm_freqs = int(np.round(max(sm_freqs, 1))) # temporal decimation if isinstance(decim, int): sm_times = int(np.round(sm_times / decim)) sm_times = max(sm_times, 1) # Create smoothing kernel kernel = _create_kernel(sm_times, sm_freqs, kernel=sm_kernel) # get indices of pairs of (group) regions if indices is None: if multivariate_con: if any(this_method in _gc_methods for this_method in method): raise ValueError( "indices must be specified when computing Granger " "causality, as all-to-all connectivity is not supported" ) logger.info("using all indices for multivariate connectivity") # indices expected to be a masked array, even if not ragged indices_use = ( np.arange(n_signals, dtype=int)[np.newaxis, :], np.arange(n_signals, dtype=int)[np.newaxis, :], ) indices_use = np.ma.masked_array(indices_use, mask=False, fill_value=-1) else: logger.info("only using indices for lower-triangular matrix") indices_use = np.tril_indices(n_signals, k=-1) else: if multivariate_con: # pad ragged indices and mask the invalid entries indices_use = _check_multivariate_indices(indices, n_signals) if any(this_method in _gc_methods for this_method in method): for seed, target in zip(indices_use[0], indices_use[1]): intersection = np.intersect1d( seed.compressed(), target.compressed() ) if intersection.size > 0: raise ValueError( "seed and target indices must not intersect when " "computing Granger causality" ) # make sure padded indices are stored in the connectivity object # create a copy so that `indices_use` can be modified indices = (indices_use[0].copy(), indices_use[1].copy()) else: indices_use = check_indices(indices) n_cons = len(indices_use[0]) # unique signals for which we actually need to compute the CSD of if multivariate_con: signals_use = np.unique(indices_use.compressed()) remapping = {ch_i: sig_i for sig_i, ch_i in enumerate(signals_use)} remapped_inds = indices_use.copy() # multivariate functions expect seed/target remapping for idx in signals_use: remapped_inds[indices_use == idx] = remapping[idx] source_idx = remapped_inds[0] target_idx = remapped_inds[1] max_n_channels = len(indices_use[0][0]) else: # no indices remapping required for bivariate functions signals_use = np.unique(np.r_[indices_use[0], indices_use[1]]) source_idx = indices_use[0].copy() target_idx = indices_use[1].copy() max_n_channels = len(indices_use[0]) # check rank input and compute data ranks if necessary if multivariate_con: rank = _check_rank_input(rank, data, indices_use) else: rank = None gc_n_lags = None # check freqs if isinstance(freqs, (int, float)): freqs = [freqs] # array conversion freqs = np.asarray(freqs) # check order for multiple frequencies if len(freqs) >= 2: delta_f = np.diff(freqs) increase = np.all(delta_f > 0) assert increase, "Frequencies should be in increasing order" # check that freqs corresponds to at least n_cycles cycles dur = float(n_times) / sfreq cycle_freq = n_cycles / dur if np.any(freqs < cycle_freq): raise ValueError( "At least one value in n_cycles corresponds to a" "wavelet longer than the signal. Use less cycles, " "higher frequencies, or longer epochs." ) # check for Nyquist if np.any(freqs > sfreq / 2): raise ValueError( f"Frequencies {freqs[freqs > sfreq / 2]} Hz are " f"larger than Nyquist = {sfreq / 2:.2f} Hz" ) # compute frequency mask based on specified min/max and decimation factor freq_mask = _compute_freq_mask(freqs, fmin, fmax, fskip) # the frequency points where we compute connectivity freqs = freqs[freq_mask] # compute central frequencies _f = xr.DataArray(np.arange(len(freqs)), dims=("freqs",), coords=(freqs,)) foi_s = _f.sel(freqs=fmin, method="nearest").data foi_e = _f.sel(freqs=fmax, method="nearest").data foi_idx = np.c_[foi_s, foi_e] f_vec = freqs[foi_idx].mean(1) if faverage: n_freqs = len(fmin) out_freqs = f_vec else: n_freqs = len(freqs) out_freqs = freqs conn = dict() conn_patterns = dict() for m in method: # CaCoh complex-valued, all other methods real-valued if m == "cacoh": con_scores_dtype = np.complex128 else: con_scores_dtype = np.float64 conn[m] = np.zeros((n_epochs, n_cons, n_freqs), dtype=con_scores_dtype) # prevent allocating memory for a huge array if not required if m in _patterns_methods: # patterns shape of [epochs x seeds/targets x cons x channels x freqs] conn_patterns[m] = np.full( (n_epochs, 2, n_cons, max_n_channels, n_freqs), np.nan ) else: conn_patterns[m] = None logger.info("Connectivity computation...") # parameters to pass to the connectivity function call_params = dict( method=method, kernel=kernel, foi_idx=foi_idx, source_idx=source_idx, target_idx=target_idx, signals_use=signals_use, mode=mode, sfreq=sfreq, freqs=freqs, faverage=faverage, n_cycles=n_cycles, mt_bandwidth=mt_bandwidth, gc_n_lags=gc_n_lags, rank=rank, decim=decim, padding=padding, kw_cwt={}, kw_mt={}, n_jobs=n_jobs, verbose=verbose, multivariate_con=multivariate_con, ) for epoch_idx in np.arange(n_epochs): logger.info(f" Processing epoch {epoch_idx+1} / {n_epochs} ...") scores, patterns = _spectral_connectivity(data[epoch_idx], **call_params) for m in method: conn[m][epoch_idx] = np.stack(scores[m], axis=0) if patterns[m] is not None: conn_patterns[m][epoch_idx] = np.stack(patterns[m], axis=0) for m in method: if conn_patterns[m] is not None: # transpose to [seeds/targets x epochs x cons x channels x freqs] conn_patterns[m] = conn_patterns[m].transpose((1, 0, 2, 3, 4)) if indices is None and not multivariate_con: conn_flat = conn conn = dict() for m in method: this_conn = np.zeros( (n_epochs, n_signals, n_signals) + conn_flat[m].shape[2:], dtype=conn_flat[m].dtype, ) this_conn[:, source_idx, target_idx] = conn_flat[m] this_conn = this_conn.reshape( ( n_epochs, n_signals**2, ) + conn_flat[m].shape[2:] ) conn[m] = this_conn # create the connectivity containers out = [] for m in method: store_params = { "data": conn[m], "patterns": conn_patterns[m], "freqs": out_freqs, "n_nodes": n_signals, "names": names, "indices": indices, "method": method, "spec_method": mode, "events": events, "event_id": event_id, "metadata": metadata, "rank": rank, "n_lags": gc_n_lags if m in _gc_methods else None, } if average: store_params["data"] = np.mean(store_params["data"], axis=0) if conn_patterns[m] is not None: store_params["patterns"] = np.mean(store_params["patterns"], axis=1) out.append(SpectralConnectivity(**store_params)) else: out.append(EpochSpectralConnectivity(**store_params)) logger.info("[Connectivity computation done]") # return the object instead of list of length one if len(out) == 1: return out[0] else: return out
def _spectral_connectivity( data, method, kernel, foi_idx, source_idx, target_idx, signals_use, mode, sfreq, freqs, faverage, n_cycles, mt_bandwidth, gc_n_lags, rank, decim, padding, kw_cwt, kw_mt, n_jobs, verbose, multivariate_con, ): """Estimate time-resolved connectivity for one epoch. Parameters ---------- data : array_like, shape (n_channels, n_times) Time-series data. method : list of str List of connectivity metrics to compute. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. source_idx : array_like, shape (n_cons,) or (n_cons, n_channels) Defines the signal pairs of interest together with ``target_idx``. target_idx : array_like, shape (n_cons,) or (n_cons, n_channels) Defines the signal pairs of interest together with ``source_idx``. signals_use : list of int The unique signals on which connectivity is to be computed. mode : str Time-frequency transformation method. sfreq : float Sampling frequency. freqs : array_like Array of frequencies of interest for time-frequency decomposition. Only the frequencies within the range specified by ``fmin`` and ``fmax`` are used. faverage : bool Average over frequency bands. n_cycles : float | array_like of float Number of cycles in the wavelet, either a fixed number or one per frequency. mt_bandwidth : float | None Multitaper time-bandwidth. gc_n_lags : int Number of lags to use for the vector autoregressive model when computing Granger causality. rank : tuple of array Ranks to project the seed and target data to. decim : int Decimation factor after time-frequency decomposition. padding : float Amount of time to consider as padding at the beginning and end of each epoch in seconds. multivariate_con : bool Whether or not multivariate connectivity is to be computed. Returns ------- scores : dict Dictionary containing the connectivity estimates corresponding to the metrics in ``method``. Each element is an array of shape (n_cons, n_freqs) or (n_cons, n_fbands) if ``faverage`` is `True`. patterns : dict Dictionary containing the connectivity patterns (for reconstructing the connectivity components in source-space) corresponding to the metrics in ``method``, if multivariate methods are called, else an empty dictionary. Each element is an array of shape (2, n_channels, n_freqs) or (2, n_channels, 1) if ``faverage`` is `True`, where 2 corresponds to the seed and target signals (respectively). """ n_cons = len(source_idx) data = np.expand_dims(data, axis=0) kw_cwt.setdefault("zero_mean", False) # avoid FutureWarning if mode == "cwt_morlet": out = tfr_array_morlet( data, sfreq, freqs, n_cycles=n_cycles, output="complex", decim=decim, n_jobs=n_jobs, **kw_cwt, ) out = np.expand_dims(out, axis=2) # same dims with multitaper weights = None elif mode == "multitaper": out = tfr_array_multitaper( data, sfreq, freqs, n_cycles=n_cycles, time_bandwidth=mt_bandwidth, output="complex", decim=decim, n_jobs=n_jobs, **kw_mt, ) if isinstance(n_cycles, (int, float)): n_cycles = [n_cycles] * len(freqs) mt_bandwidth = mt_bandwidth if mt_bandwidth else 4 n_tapers = int(np.floor(mt_bandwidth - 1)) weights = np.zeros((n_tapers, len(freqs), out.shape[-1])) for i, (f, n_c) in enumerate(zip(freqs, n_cycles)): window_length = np.arange(0.0, n_c / float(f), 1.0 / sfreq).shape[0] half_nbw = mt_bandwidth / 2.0 n_tapers = int(np.floor(mt_bandwidth - 1)) _, eigvals = dpss_windows(window_length, half_nbw, n_tapers, sym=False) weights[:, i, :] = np.sqrt(eigvals[:, np.newaxis]) # weights have shape (n_tapers, n_freqs, n_times) else: raise ValueError("Mode must be 'cwt_morlet' or 'multitaper'.") out = np.squeeze(out, axis=0) if padding: if padding < 0: raise ValueError(f"Padding cannot be negative, got {padding}.") if padding >= data.shape[-1] / sfreq / 2: raise ValueError( f"Padding cannot be larger than half of data " f"length, got {padding}." ) pad_idx = int(np.floor(padding * sfreq / decim)) out = out[..., pad_idx:-pad_idx] weights = weights[..., pad_idx:-pad_idx] if weights is not None else None # compute for each connectivity method scores = {} patterns = {} conn = _parallel_con( out, method, kernel, foi_idx, source_idx, target_idx, signals_use, gc_n_lags, rank, n_jobs, verbose, n_cons, faverage, weights, multivariate_con, ) for i, m in enumerate(method): if multivariate_con: scores[m] = conn[0][i] patterns[m] = conn[1][i] if conn[1][i] is not None else None else: scores[m] = [out[i] for out in conn] patterns[m] = None return scores, patterns ############################################################################### ############################################################################### # TIME-RESOLVED CORE FUNCTIONS ############################################################################### ############################################################################### def _parallel_con( w, method, kernel, foi_idx, source_idx, target_idx, signals_use, gc_n_lags, rank, n_jobs, verbose, total, faverage, weights, multivariate_con, ): """Compute spectral connectivity in parallel. Parameters ---------- w : array_like, shape (n_chans, n_tapers, n_freqs, n_times) Time-frequency data (complex signal). method : list of str List of connectivity metrics to compute. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. source_idx : array_like, shape (n_cons,) or (n_cons, n_channels) Defines the signal pairs of interest together with ``target_idx``. target_idx : array_like, shape (n_cons,) or (n_cons, n_channels) Defines the signal pairs of interest together with ``source_idx``. signals_use : list of int The unique signals on which connectivity is to be computed. gc_n_lags : int Number of lags to use for the vector autoregressive model when computing Granger causality. rank : tuple of array of int Ranks to project the seed and target data to. n_jobs : int Number of parallel jobs. total : int Number of pairs of signals. faverage : bool Average over frequency bands. weights : array_like, shape (n_tapers, n_freqs, n_times) Multitaper weights. multivariate_con : bool Whether or not multivariate connectivity is being computed. Returns ------- out : tuple of list of array Connectivity estimates for each signal pair, method, and frequency or frequency band. If bivariate methods are called, the output is a tuple of a list of arrays containing the connectivity scores. If multivariate methods are called, the output is a tuple of lists containing arrays for the connectivity scores and patterns, respectively. """ if "coh" in method: # psd if weights is not None: psd = weights * w psd = psd * np.conj(psd) psd = psd.real.sum(axis=1) psd = psd * 2 / (weights * weights.conj()).real.sum(axis=0) else: psd = w.real**2 + w.imag**2 psd = np.squeeze(psd, axis=1) # smooth psd = _smooth_spectra(psd, kernel) else: psd = None if not multivariate_con: # only show progress if verbosity level is DEBUG if verbose != "DEBUG" and verbose != "debug" and verbose != 10: total = None # define the function to compute in parallel parallel, my_pairwise_con, n_jobs = parallel_func( _pairwise_con, n_jobs=n_jobs, verbose=verbose, total=total ) return tuple( parallel( my_pairwise_con( w, psd, s, t, method, kernel, foi_idx, faverage, weights ) for s, t in zip(source_idx, target_idx) ) ) return _multivariate_con( w, source_idx, target_idx, signals_use, method, kernel, foi_idx, faverage, weights, gc_n_lags, rank, n_jobs, ) def _pairwise_con(w, psd, x, y, method, kernel, foi_idx, faverage, weights): """Compute spectral connectivity metrics between two signals. Parameters ---------- w : array_like, shape (n_chans, n_tapers, n_freqs, n_times) Time-frequency data. psd : array_like, shape (n_chans, n_freqs, n_times) Power spectrum between signals ``x`` and ``y``. x : int Channel index. y : int Channel index. method : str Connectivity method. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. faverage : bool Average over frequency bands. weights : array_like, shape (n_tapers, n_freqs, n_times) | None Multitaper weights. Returns ------- out : list List of connectivity estimates between signals ``x`` and ``y`` corresponding to the methods in ``method``. Each element is an array with shape (n_freqs,) or (n_fbands) depending on ``faverage``. """ w_x, w_y = w[x], w[y] if weights is not None: s_xy = np.sum(weights * w_x * np.conj(weights * w_y), axis=0) s_xy = s_xy * 2 / (weights * np.conj(weights)).real.sum(axis=0) else: s_xy = w_x * np.conj(w_y) s_xy = np.squeeze(s_xy, axis=0) s_xy = _smooth_spectra(s_xy, kernel) out = [] conn_func = {"plv": _plv, "ciplv": _ciplv, "pli": _pli, "wpli": _wpli, "coh": _coh} for m in method: if m == "coh": s_xx = psd[x] s_yy = psd[y] out.append(conn_func[m](s_xx, s_yy, s_xy)) else: out.append(conn_func[m](s_xy)) for i, _ in enumerate(out): # mean inside frequency sliding window (if needed) if isinstance(foi_idx, np.ndarray) and faverage: out[i] = _foi_average(out[i], foi_idx) # squeeze time dimension out[i] = out[i].squeeze(axis=-1) return out def _multivariate_con( w, seeds, targets, signals_use, method, kernel, foi_idx, faverage, weights, gc_n_lags, rank, n_jobs, ): """Compute spectral connectivity metrics between multiple signals. Parameters ---------- w : array_like, shape (n_chans, n_tapers, n_freqs, n_times) Time-frequency data. seeds : array, shape of (n_cons, n_channels) Seed channel indices. ``n_channels`` is the largest number of channels across all connections, with missing entries padded with ``-1``. targets : array, shape of (n_cons, n_channels) Target channel indices. ``n_channels`` is the largest number of channels across all connections, with missing entries padded with ``-1``. signals_use : list of int The unique signals on which connectivity is to be computed. method : str Connectivity method. kernel : array_like, shape (n_sm_fres, n_sm_times) Smoothing kernel. foi_idx : array_like, shape (n_foi, 2) Upper and lower bound indices of frequency bands. faverage : bool Average over frequency bands. weights : array_like, shape (n_tapers, n_freqs, n_times) | None Multitaper weights. gc_n_lags : int Number of lags to use for the vector autoregressive model when computing Granger causality. rank : tuple of array, shape of (2, n_cons) Ranks to project the seed and target data to. n_jobs : int Number of jobs to run in parallel. Returns ------- scores : list List of connectivity scores between seed and target signals for each connectivity method. Each element is an array with shape (n_freqs,) or (n_fbands) depending on ``faverage``. patterns : list List of connectivity patterns between seed and target signals for each connectivity method. Each element is an array of length 2 corresponding to the seed and target patterns, respectively, each with shape (n_channels, n_freqs) or (n_channels, n_fbands) depending on ``faverage``. ``n_channels`` is the largest number of channels across all connections, with missing entries padded with ``np.nan``. """ csd = [] for x in signals_use: for y in signals_use: w_x, w_y = w[x], w[y] if weights is not None: s_xy = np.sum(weights * w_x * np.conj(weights * w_y), axis=0) s_xy = s_xy * 2 / (weights * np.conj(weights)).real.sum(axis=0) else: s_xy = w_x * np.conj(w_y) s_xy = np.squeeze(s_xy, axis=0) csd.append(_smooth_spectra(s_xy, kernel).mean(axis=-1)) csd = np.array(csd) # initialise connectivity estimators and add CSD information conn = [] for m in method: call_params = { "n_signals": len(signals_use), "n_cons": len(seeds), "n_freqs": csd.shape[1], "n_times": 0, "n_jobs": n_jobs, } if m in _gc_methods: call_params["n_lags"] = gc_n_lags con_est = _CON_METHOD_MAP_MULTIVARIATE[m](**call_params) for con_i, con_csd in enumerate(csd): con_est.accumulate(con_i, con_csd) conn.append(con_est) # compute connectivity scores = [] patterns = [] for con_est in conn: con_est.compute_con((seeds, targets), rank) scores.append(con_est.con_scores[..., np.newaxis]) patterns.append(con_est.patterns) if patterns[-1] is not None: patterns[-1] = patterns[-1][..., np.newaxis] for i, _ in enumerate(scores): # mean inside frequency sliding window (if needed) if isinstance(foi_idx, np.ndarray) and faverage: scores[i] = _foi_average(scores[i], foi_idx) if patterns[i] is not None: patterns[i] = _foi_average(patterns[i], foi_idx) # squeeze time dimension scores[i] = scores[i].squeeze(axis=-1) if patterns[i] is not None: patterns[i] = patterns[i].squeeze(axis=-1) return scores, patterns def _plv(s_xy): """Compute phase-locking value given the cross power spectral density. Parameters ---------- s_xy : array-like, shape (n_freqs, n_times) The cross PSD between channel 'x' and channel 'y' across frequency and time points. Returns ------- plv : array-like, shape (n_freqs, n_times) The estimated PLV. """ s_xy = s_xy / np.abs(s_xy) plv = np.abs(s_xy.mean(axis=-1, keepdims=True)) return plv def _ciplv(s_xy): """Compute corrected imaginary phase-locking value. Parameters ---------- s_xy : array-like, shape (n_freqs, n_times) The cross PSD between channel 'x' and channel 'y' across frequency and time points. Returns ------- ciplv : array-like, shape (n_freqs, n_times) The estimated ciPLV. """ s_xy = s_xy / np.abs(s_xy) rplv = np.abs(np.mean(np.real(s_xy), axis=-1, keepdims=True)) iplv = np.abs(np.mean(np.imag(s_xy), axis=-1, keepdims=True)) ciplv = iplv / (np.sqrt(1 - rplv**2)) return ciplv def _pli(s_xy): """Compute phase-lag index given the cross power spectral density. Parameters ---------- s_xy : array-like, shape (n_freqs, n_times) The cross PSD between channel 'x' and channel 'y' across frequency and time points. Returns ------- pli : array-like, shape (n_freqs, n_times) The estimated PLI. """ pli = np.abs(np.mean(np.sign(np.imag(s_xy)), axis=-1, keepdims=True)) return pli def _wpli(s_xy): """Compute weighted phase-lag index given the cross power spectral density. Parameters ---------- s_xy : array-like, shape (n_freqs, n_times) The cross PSD between channel 'x' and channel 'y' across frequency and time points. Returns ------- wpli : array-like, shape (n_freqs, n_times) The estimated wPLI. """ con_num = np.abs(s_xy.imag.mean(axis=-1, keepdims=True)) con_den = np.mean(np.abs(s_xy.imag), axis=-1, keepdims=True) wpli = con_num / con_den return wpli def _coh(s_xx, s_yy, s_xy): """Compute coherence given the cross spectral density and PSD. Parameters ---------- s_xx : array-like, shape (n_freqs, n_times) The PSD of channel 'x'. s_yy : array-like, shape (n_freqs, n_times) The PSD of channel 'y'. s_xy : array-like, shape (n_freqs, n_times) The cross PSD between channel 'x' and channel 'y' across frequency and time points. Returns ------- coh : array-like, shape (n_freqs, n_times) The estimated COH. """ con_num = np.abs(s_xy.mean(axis=-1, keepdims=True)) con_den = np.sqrt( s_xx.mean(axis=-1, keepdims=True) * s_yy.mean(axis=-1, keepdims=True) ) coh = con_num / con_den return coh def _compute_csd(x, y, weights): """Compute cross spectral density between signals x and y.""" if weights is not None: s_xy = np.sum(weights * x * np.conj(weights * y), axis=-3) s_xy = s_xy * 2 / (weights * np.conj(weights)).real.sum(axis=-3) else: s_xy = x * np.conj(y) s_xy = np.squeeze(s_xy, axis=-3) return s_xy def _foi_average(conn, foi_idx): """Average inside frequency bands. The frequency dimension should be located at -2. Parameters ---------- conn : array_like, shape (..., n_freqs, n_times) Connectivity estimate array. foi_idx : array_like, shape (n_foi, 2) Upper and lower frequency bounds of each frequency band. Returns ------- conn_f : np.ndarray, shape (..., n_fbands, n_times) Connectivity estimate array, averaged within frequency bands. """ # get the number of foi n_foi = foi_idx.shape[0] # get input shape and replace n_freqs with the number of foi sh = list(conn.shape) sh[-2] = n_foi # compute average conn_f = np.zeros(sh, dtype=conn.dtype) for n_f, (f_s, f_e) in enumerate(foi_idx): f_e += 1 if f_s == f_e else f_e conn_f[..., n_f, :] = conn[..., f_s:f_e, :].mean(-2) return conn_f