Source code for mne_connectivity.viz._3d

"""Functions to make 3D plots with M/EEG data."""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#          Mark Wronkiewicz <wronk.mark@gmail.com>
#
# License: Simplified BSD

import numpy as np
from mne.io.constants import FIFF
from mne.io.pick import _picks_to_idx
from mne.utils import _validate_type, fill_doc, verbose

verbose_dec = verbose
FIDUCIAL_ORDER = (FIFF.FIFFV_POINT_LPA, FIFF.FIFFV_POINT_NASION, FIFF.FIFFV_POINT_RPA)


[docs] @fill_doc def plot_sensors_connectivity( info, con, picks=None, cbar_label="Connectivity", n_con=20, cmap="RdBu" ): """Visualize the sensor connectivity in 3D. Parameters ---------- info : dict | None The measurement info. con : array, shape (n_channels, n_channels) | Connectivity The computed connectivity measure(s). %(picks_good_data)s Indices of selected channels. cbar_label : str Label for the colorbar. n_con : int Number of strongest connections shown. By default 20. cmap : str | instance of matplotlib.colors.Colormap Colormap for coloring connections by strength. If :class:`str`, must be a valid Matplotlib colormap (i.e. a valid key of ``matplotlib.colormaps``). Default is ``"RdBu"``. Returns ------- fig : instance of Renderer The 3D figure. """ _validate_type(info, "info") from mne.viz.backends.renderer import _get_renderer from mne_connectivity.base import BaseConnectivity if isinstance(con, BaseConnectivity): con = con.get_data() renderer = _get_renderer(size=(600, 600), bgcolor=(0.5, 0.5, 0.5)) picks = _picks_to_idx(info, picks) if len(picks) != len(con): raise ValueError( "The number of channels picked (%s) does not " "correspond to the size of the connectivity data " "(%s)" % (len(picks), len(con)) ) # Plot the sensor locations sens_loc = [info["chs"][k]["loc"][:3] for k in picks] sens_loc = np.array(sens_loc) renderer.sphere( np.c_[sens_loc[:, 0], sens_loc[:, 1], sens_loc[:, 2]], color=(1, 1, 1), opacity=1, scale=0.005, ) # Get the strongest n_con connections threshold = np.sort(con, axis=None)[-n_con] ii, jj = np.where(con >= threshold) # Remove close connections min_dist = 0.05 # exclude sensors that are less than 5cm apart con_nodes = list() con_val = list() for i, j in zip(ii, jj): if np.linalg.norm(sens_loc[i] - sens_loc[j]) > min_dist: con_nodes.append((i, j)) con_val.append(con[i, j]) con_val = np.array(con_val) # Show the connections as tubes between sensors vmax = np.max(con_val) vmin = np.min(con_val) for val, nodes in zip(con_val, con_nodes): x1, y1, z1 = sens_loc[nodes[0]] x2, y2, z2 = sens_loc[nodes[1]] tube = renderer.tube( origin=np.c_[x1, y1, z1], destination=np.c_[x2, y2, z2], scalars=np.c_[val, val], vmin=vmin, vmax=vmax, reverse_lut=True, colormap=cmap, ) renderer.scalarbar(source=tube, title=cbar_label) # Add the sensor names for the connections shown nodes_shown = list(set([n[0] for n in con_nodes] + [n[1] for n in con_nodes])) for node in nodes_shown: x, y, z = sens_loc[node] renderer.text3d( x, y, z, text=info["ch_names"][picks[node]], scale=0.005, color=(0, 0, 0) ) renderer.set_camera( azimuth=-88.7, elevation=40.8, distance=0.76, focalpoint=np.array([-3.9e-4, -8.5e-3, -1e-2]), ) renderer.show() return renderer.scene()