Hilbert Detector¶
[1]:
# first let's load in all our packages
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import sys
import os
import re
import pandas as pd
from mne_bids import (read_raw_bids, BIDSPath,
get_entity_vals, get_datatypes,
make_report)
from mne_bids.stats import count_events
import mne
from mne import make_ad_hoc_cov
basepath = os.path.join(os.getcwd(), "../..")
sys.path.append(basepath)
from mne_hfo import HilbertDetector
[2]:
%%capture
# this may change depending on where you store the data
root = "C:/Users/patri/Dropbox/fedele_hfo_data"
subjects = get_entity_vals(root, 'subject')
sessions = get_entity_vals(root, 'session')
subjectID = subjects[0]
sessionID = sessions[0]
bids_path = BIDSPath(subject=subjectID, session=sessionID,
datatype='ieeg',
suffix='ieeg',
extension='.vhdr', root=root)
# get first matching dataset
fpath = bids_path.match()[0]
# load dataset into mne Raw object
extra_params = dict(preload=True)
raw = read_raw_bids(fpath, extra_params)
[3]:
def convert_to_bipolar(raw, drop_originals=True):
original_ch_names = raw.ch_names
ch_names_sorted = sorted(original_ch_names)
ch_pairs = []
for first, second in zip(ch_names_sorted, ch_names_sorted[1:]):
firstName = re.sub(r'[0-9]+', '', first)
secondName = re.sub(r'[0-9]+', '', second)
if firstName == secondName:
ch_pairs.append((first,second))
for ch_pair in ch_pairs:
raw = mne.set_bipolar_reference(raw, ch_pair[0], ch_pair[1], drop_refs=False)
if drop_originals:
raw = raw.drop_channels(original_ch_names)
return raw
[4]:
%%capture
raw = convert_to_bipolar(raw)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-f6e3da9a949b> in <module>
2 info = raw.info
3 sfreq = info['sfreq']
----> 4 data = raw.get_data(start=0, stop=30*sfreq)
5 raw = mne.io.RawArray(data, info=info)
<decorator-gen-170> in get_data(self, picks, start, stop, reject_by_annotation, return_times, verbose)
~\.virtualenvs\mne-hfo-tjBZjdVA\lib\site-packages\mne\io\base.py in get_data(self, picks, start, stop, reject_by_annotation, return_times, verbose)
823 stop = min(self.n_times if stop is None else stop, self.n_times)
824 if len(self.annotations) == 0 or reject_by_annotation is None:
--> 825 data, times = self[picks, start:stop]
826 return (data, times) if return_times else data
827 _check_option('reject_by_annotation', reject_by_annotation.lower(),
~\.virtualenvs\mne-hfo-tjBZjdVA\lib\site-packages\mne\io\base.py in __getitem__(self, item)
770 sel, start, stop = self._parse_get_set_params(item)
771 if self.preload:
--> 772 data = self._data[sel, start:stop]
773 else:
774 data = self._read_segment(start=start, stop=stop, sel=sel,
TypeError: slice indices must be integers or None or have an __index__ method
[7]:
info = raw.info
sfreq = info['sfreq']
data = raw.get_data(start=0, stop=int(30*sfreq))
raw = mne.io.RawArray(data, info=info)
Creating RawArray with float64 data, n_channels=43, n_times=60000
Range : 0 ... 59999 = 0.000 ... 30.000 secs
Ready.
[8]:
kwargs = {
'band_method': 'log',
'filter_band': (80, 250), # (l_freq, h_freq)
'threshold': 3, # Number of st. deviations
'hfo_name': "ripple",
'n_jobs': 1,
}
hil_detector = HilbertDetector(**kwargs)
[9]:
raw.n_times
[9]:
60000
[10]:
# perform the fits
hil_detector = hil_detector.fit(raw)
0%| | 0/43 [00:00<?, ?it/s]
freq_span: 61
2%|▏ | 1/43 [00:00<00:21, 2.00it/s]
freq_span: 61
5%|▍ | 2/43 [00:00<00:20, 2.00it/s]
freq_span: 61
7%|▋ | 3/43 [00:01<00:19, 2.02it/s]
freq_span: 61
9%|▉ | 4/43 [00:01<00:19, 2.03it/s]
freq_span: 61
12%|█▏ | 5/43 [00:02<00:18, 2.07it/s]
freq_span: 61
14%|█▍ | 6/43 [00:02<00:17, 2.09it/s]
freq_span: 61
16%|█▋ | 7/43 [00:03<00:16, 2.12it/s]
freq_span: 61
19%|█▊ | 8/43 [00:03<00:16, 2.13it/s]
freq_span: 61
21%|██ | 9/43 [00:04<00:15, 2.16it/s]
freq_span: 61
23%|██▎ | 10/43 [00:04<00:15, 2.19it/s]
freq_span: 61
26%|██▌ | 11/43 [00:05<00:14, 2.20it/s]
freq_span: 61
28%|██▊ | 12/43 [00:05<00:14, 2.18it/s]
freq_span: 61
30%|███ | 13/43 [00:06<00:13, 2.15it/s]
freq_span: 61
33%|███▎ | 14/43 [00:06<00:13, 2.15it/s]
freq_span: 61
35%|███▍ | 15/43 [00:07<00:13, 2.15it/s]
freq_span: 61
37%|███▋ | 16/43 [00:07<00:12, 2.17it/s]
freq_span: 61
40%|███▉ | 17/43 [00:07<00:11, 2.18it/s]
freq_span: 61
42%|████▏ | 18/43 [00:08<00:11, 2.21it/s]
freq_span: 61
44%|████▍ | 19/43 [00:08<00:10, 2.24it/s]
freq_span: 61
47%|████▋ | 20/43 [00:09<00:10, 2.24it/s]
freq_span: 61
49%|████▉ | 21/43 [00:09<00:09, 2.23it/s]
freq_span: 61
51%|█████ | 22/43 [00:10<00:09, 2.22it/s]
freq_span: 61
53%|█████▎ | 23/43 [00:10<00:08, 2.25it/s]
freq_span: 61
56%|█████▌ | 24/43 [00:11<00:08, 2.25it/s]
freq_span: 61
58%|█████▊ | 25/43 [00:11<00:07, 2.25it/s]
freq_span: 61
60%|██████ | 26/43 [00:11<00:07, 2.24it/s]
freq_span: 61
63%|██████▎ | 27/43 [00:12<00:07, 2.25it/s]
freq_span: 61
65%|██████▌ | 28/43 [00:12<00:06, 2.24it/s]
freq_span: 61
67%|██████▋ | 29/43 [00:13<00:06, 2.22it/s]
freq_span: 61
70%|██████▉ | 30/43 [00:13<00:05, 2.24it/s]
freq_span: 61
72%|███████▏ | 31/43 [00:14<00:05, 2.26it/s]
freq_span: 61
74%|███████▍ | 32/43 [00:14<00:04, 2.26it/s]
freq_span: 61
77%|███████▋ | 33/43 [00:15<00:04, 2.25it/s]
freq_span: 61
79%|███████▉ | 34/43 [00:15<00:03, 2.25it/s]
freq_span: 61
81%|████████▏ | 35/43 [00:15<00:03, 2.25it/s]
freq_span: 61
84%|████████▎ | 36/43 [00:16<00:03, 2.27it/s]
freq_span: 61
86%|████████▌ | 37/43 [00:16<00:02, 2.25it/s]
freq_span: 61
88%|████████▊ | 38/43 [00:17<00:02, 2.28it/s]
freq_span: 61
91%|█████████ | 39/43 [00:17<00:01, 2.28it/s]
freq_span: 61
93%|█████████▎| 40/43 [00:18<00:01, 2.29it/s]
freq_span: 61
95%|█████████▌| 41/43 [00:18<00:00, 2.26it/s]
freq_span: 61
98%|█████████▊| 42/43 [00:19<00:00, 2.26it/s]
freq_span: 61
100%|██████████| 43/43 [00:19<00:00, 2.21it/s]
0%| | 0/43 [00:00<?, ?it/s]
100%|██████████| 61/61 [00:00<00:00, 815.07HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 820.47HFO-first-phase/s]
5%|▍ | 2/43 [00:00<00:03, 12.98it/s]
100%|██████████| 61/61 [00:00<00:00, 848.13HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 864.18HFO-first-phase/s]
9%|▉ | 4/43 [00:00<00:02, 13.22it/s]
100%|██████████| 61/61 [00:00<00:00, 830.25HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 871.24HFO-first-phase/s]
14%|█▍ | 6/43 [00:00<00:02, 13.35it/s]
100%|██████████| 61/61 [00:00<00:00, 847.72HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 847.76HFO-first-phase/s]
19%|█▊ | 8/43 [00:00<00:02, 13.42it/s]
100%|██████████| 61/61 [00:00<00:00, 847.64HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 871.45HFO-first-phase/s]
23%|██▎ | 10/43 [00:00<00:02, 13.46it/s]
100%|██████████| 61/61 [00:00<00:00, 871.42HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 859.87HFO-first-phase/s]
28%|██▊ | 12/43 [00:00<00:02, 13.56it/s]
100%|██████████| 61/61 [00:00<00:00, 865.06HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 859.05HFO-first-phase/s]
33%|███▎ | 14/43 [00:01<00:02, 13.56it/s]
100%|██████████| 61/61 [00:00<00:00, 803.96HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 825.24HFO-first-phase/s]
37%|███▋ | 16/43 [00:01<00:02, 13.34it/s]
100%|██████████| 61/61 [00:00<00:00, 848.21HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 897.48HFO-first-phase/s]
42%|████▏ | 18/43 [00:01<00:01, 13.47it/s]
100%|██████████| 61/61 [00:00<00:00, 884.18HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 896.74HFO-first-phase/s]
47%|████▋ | 20/43 [00:01<00:01, 13.66it/s]
100%|██████████| 61/61 [00:00<00:00, 884.58HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 896.35HFO-first-phase/s]
51%|█████ | 22/43 [00:01<00:01, 13.82it/s]
100%|██████████| 61/61 [00:00<00:00, 909.52HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 896.39HFO-first-phase/s]
56%|█████▌ | 24/43 [00:01<00:01, 13.99it/s]
100%|██████████| 61/61 [00:00<00:00, 896.36HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 909.36HFO-first-phase/s]
60%|██████ | 26/43 [00:01<00:01, 14.07it/s]
100%|██████████| 61/61 [00:00<00:00, 896.99HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 916.46HFO-first-phase/s]
65%|██████▌ | 28/43 [00:02<00:01, 14.16it/s]
100%|██████████| 61/61 [00:00<00:00, 883.76HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 883.72HFO-first-phase/s]
70%|██████▉ | 30/43 [00:02<00:00, 14.11it/s]
100%|██████████| 61/61 [00:00<00:00, 872.18HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 871.87HFO-first-phase/s]
74%|███████▍ | 32/43 [00:02<00:00, 14.02it/s]
100%|██████████| 61/61 [00:00<00:00, 871.21HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 884.17HFO-first-phase/s]
79%|███████▉ | 34/43 [00:02<00:00, 14.00it/s]
100%|██████████| 61/61 [00:00<00:00, 870.93HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 895.79HFO-first-phase/s]
84%|████████▎ | 36/43 [00:02<00:00, 13.99it/s]
100%|██████████| 61/61 [00:00<00:00, 831.16HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 848.07HFO-first-phase/s]
88%|████████▊ | 38/43 [00:02<00:00, 13.80it/s]
100%|██████████| 61/61 [00:00<00:00, 839.46HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 854.21HFO-first-phase/s]
93%|█████████▎| 40/43 [00:02<00:00, 13.67it/s]
100%|██████████| 61/61 [00:00<00:00, 874.26HFO-first-phase/s]
100%|██████████| 61/61 [00:00<00:00, 860.82HFO-first-phase/s]
98%|█████████▊| 42/43 [00:03<00:00, 13.72it/s]
100%|██████████| 61/61 [00:00<00:00, 919.07HFO-first-phase/s]
100%|██████████| 43/43 [00:03<00:00, 13.74it/s]
[12]:
hil_detector.df_
[12]:
onset | duration | label | channels | sample | |
---|---|---|---|---|---|
0 | 10.4095 | 0.6320 | ripple | AHR1-AHR2 | 20819.0 |
1 | 14.2345 | 0.2995 | ripple | AHR1-AHR2 | 28469.0 |
2 | 16.0610 | 0.3110 | ripple | AHR1-AHR2 | 32122.0 |
3 | 23.8995 | 0.4905 | ripple | AHR1-AHR2 | 47799.0 |
4 | 10.4225 | 0.5130 | ripple | AHR2-AHR3 | 20845.0 |
... | ... | ... | ... | ... | ... |
69 | 16.0450 | 0.5025 | ripple | PHR4-PHR5 | 32090.0 |
70 | 23.9560 | 0.5325 | ripple | PHR4-PHR5 | 47912.0 |
71 | 6.4010 | 0.1840 | ripple | PHR5-PHR6 | 12802.0 |
72 | 1.4250 | 0.1630 | ripple | PHR7-PHR8 | 2850.0 |
73 | 28.2535 | 0.3480 | ripple | PHR7-PHR8 | 56507.0 |
74 rows × 5 columns
[ ]: