Source code for mne_nirs.statistics._glm_level_first

# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD (3-clause)

import warnings
from copy import deepcopy
from inspect import getfullargspec
from pathlib import PosixPath

import numpy as np
import pandas as pd
from h5io import read_hdf5, write_hdf5
from numpy import array_equal, where

with warnings.catch_warnings(record=True):
    warnings.simplefilter("ignore")
    import nilearn.glm
    from nilearn.glm.first_level import run_glm as nilearn_glm

try:  # remove once MNE 1.6 is required
    from mne._fiff.meas_info import ContainsMixin
except ImportError:
    from mne.io.meas_info import ContainsMixin
from mne import Info, pick_info
from mne.io.constants import FIFF
from mne.io.pick import _picks_to_idx
from mne.utils import _validate_type, check_fname, fill_doc, verbose, warn

from ..statistics._roi import _glm_region_of_interest
from ..visualisation import plot_glm_surface_projection
from ..visualisation._plot_GLM_topo import _plot_glm_contrast_topo, _plot_glm_topo


@fill_doc
class _BaseGLM(ContainsMixin):
    """Base GLM results class."""

    @property
    def ch_names(self):
        """Return the channel names.

        Returns
        -------
        names : array
            The channel names.
        """
        return self.info["ch_names"]

    def __str__(self):
        return f"GLM Results for {len(self.ch_names)} channels"

    def __repr__(self):
        return f"GLM Results for {len(self.ch_names)} channels"

    def __len__(self):
        return len(self.info.ch_names)

    def _get_state(self):  # noqa: D105
        """Return the state of the GLM results as a dictionary.

        See _state_to_glm for inverse operation.

        Returns
        -------
        state : dict
            State of the object.
        """
        state = deepcopy(
            dict(
                data=self._data,
                design=self.design,
                info=self.info,
                preload=self.preload,
                classname=str(self.__class__),
            )
        )
        if isinstance(state["data"], dict):
            for channel in state["data"]:
                state["data"][channel] = state["data"][channel].__dict__
                if isinstance(
                    state["data"][channel]["model"], nilearn.glm.regression.OLSModel
                ):
                    state["data"][channel]["modelname"] = str(
                        state["data"][channel]["model"].__class__
                    )
                    state["data"][channel]["model"] = state["data"][channel][
                        "model"
                    ].__dict__
        if isinstance(state["data"], nilearn.glm.contrasts.Contrast):
            state["data"] = state["data"].__dict__
        return state

    def copy(self):
        """Return a copy of the GLM results.

        Returns
        -------
        inst : instance of ResultsGLM
            A copy of the object.
        """
        return deepcopy(self)

    @fill_doc
    def save(self, fname, overwrite=False):
        """Save GLM results to disk.

        Parameters
        ----------
        fname : str
            The filename to use to write the HDF5 data.
            Should end in ``'glm.h5'``.
        %(overwrite)s
        """
        _validate_type(fname, "path-like", "fname")
        if isinstance(fname, PosixPath):
            fname = str(fname)
        if not fname.endswith("glm.h5"):
            raise OSError(
                f"The filename must end with glm.h5, instead received {fname}"
            )
        write_hdf5(fname, self._get_state(), overwrite=overwrite, title="mnepython")

    def to_dataframe(self, order=None):
        """Return a tidy dataframe representing the GLM results.

        Parameters
        ----------
        order : list
            Order in which the rows should be returned by channel name.

        Returns
        -------
        tidy : pandas.DataFrame
            Dataframe containing GLM results.
        """
        from ..utils import glm_to_tidy

        if order is None:
            order = self.ch_names
        return glm_to_tidy(self.info, self._data, self.design, order=order)

    def scatter(
        self, conditions=(), exclude_no_interest=True, axes=None, no_interest=None
    ):
        """Scatter plot of the GLM results.

        Parameters
        ----------
        conditions : list
            List of condition names to plot. By default plots all regressors
            of interest.
        exclude_no_interest : bool
            Exclude regressors of no interest from the figure.
        axes : Axes
            Optional axes on which to plot the data.
        no_interest : list
            List of regressors that are of no interest. If none are specified
            then conditions starting with
            ["drift", "constant", "short", "Short"] will be excluded.

        Returns
        -------
        plt : matplotlib.Figure
            Scatter plot.
        """
        if no_interest is None:
            no_interest = ["drift", "constant", "short", "Short"]
        import matplotlib.pyplot as plt

        df = self.to_dataframe()

        x_column = "Condition"
        y_column = "theta"
        if "ContrastType" in df.columns:
            x_column = "ch_name"
            y_column = "effect"
            if len(conditions) == 0:
                conditions = ["t", "f"]
            df = df.query("ContrastType in @conditions")

        else:
            if len(conditions) == 0:
                conditions = self.design.columns
            df = df.query("Condition in @conditions")

        if exclude_no_interest:
            for no_i in no_interest:
                df = df[~df[x_column].astype(str).str.startswith(no_i)]

        df_hbo = df.query('Chroma == "hbo"')
        df_hbr = df.query('Chroma == "hbr"')

        if axes is None:
            fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(10, 5))

        axes.scatter(df_hbo[x_column], df_hbo[y_column] * 1e6, c="r")
        axes.scatter(df_hbr[x_column], df_hbr[y_column] * 1e6, c="b")
        axes.set_xlabel(x_column)
        axes.set_ylabel(y_column.capitalize())
        axes.legend(["Oxyhaemoglobin", "Deoxyhaemoglobin"])
        axes.hlines([0.0], 0, len(np.unique(df[x_column])) - 1)
        if len(np.unique(df[x_column])) > 8:
            plt.xticks(rotation=45, ha="right")

        return axes


[docs] @fill_doc class RegressionResults(_BaseGLM): """ Class containing GLM regression results. Parameters ---------- info : mne.Info Info. data : dict Dictionary. design : dataframe Design matrix. Returns ------- glm_est : ResultsGLM, Result class. """ @property def data(self): return self._data @data.setter def data(self, data): if not isinstance(data, dict): raise TypeError("Data must be a dictionary type") if not array_equal(list(data.keys()), self.info.ch_names): raise TypeError("Dictionary keys must match ch_names") for idx in range(len(self.info.ch_names)): if list(data.keys())[idx] is not self.info.ch_names[idx]: raise TypeError("Data names and channel names do not match") for d in data: if type(data[d]) is not nilearn.glm.regression.RegressionResults: raise TypeError("Dictionary items must be nilearn RegressionResults") self._data = data def __init__(self, info, data, design): # noqa: D102 self.info = info self.data = data self.design = design self.preload = True def __eq__(self, res): same_keys = self.data.keys() == res.data.keys() same_design = (self.design == res.design).all().all() same_ch = self.info.ch_names == res.info.ch_names same_theta = np.sum( [(res.theta()[idx] == val).all() for idx, val in enumerate(self.theta())] ) == len(self.ch_names) return int(same_ch and same_design and same_keys and same_theta)
[docs] @fill_doc def pick(self, picks, exclude=()): """Pick a subset of channels. Parameters ---------- %(picks_all)s exclude : list | str Set of channels to exclude, only used when picking based on types (e.g., exclude="bads" when picks="meg"). Returns ------- inst : instance of ResultsGLM The modified instance. """ picks = _picks_to_idx(self.info, picks, "all", exclude, allow_empty=False) pick_info(self.info, picks, copy=False) self._data = {key: self._data[key] for key in self.info.ch_names} return self
[docs] def theta(self): """Return the GLM theta results. Returns ------- thetas : array Array of thetas. An array is provided per channel. """ return [self._data[key].theta for key in self.info.ch_names]
[docs] def MSE(self): """Return the GLM MSE. Returns ------- thetas : array Array of MSEs. A value is provided per channel. """ return [self._data[key].MSE[0] for key in self.info.ch_names]
[docs] def model(self): """Return the GLM model. Returns ------- models : array Array of models. An model is provided per channel. """ return [self._data[key].model for key in self.info.ch_names]
[docs] def compute_contrast(self, contrast, contrast_type=None): """ Compute contrasts on regression results. This is a wrapper function for nilearn.stats.contrasts. Parameters ---------- contrast : numpy.ndarray of shape (p) or (q, p), Where q = number of contrast vectors and p = number of regressors. contrast_type : {None, ‘t’, ‘F’}, optional Type of the contrast. If None, then defaults to ‘t’ for 1D con_val and ‘F’ for 2D con_val. Returns ------- contrast : Contrast instance, Yields the statistics of the contrast (effects, variance, p-values). """ cont = _compute_contrast(self._data, contrast, contrast_type=contrast_type) return ContrastResults(self.info, cont, self.design)
[docs] def plot_topo( self, conditions=None, axes=None, *, vlim=(None, None), vmin=None, vmax=None, colorbar=True, figsize=(12, 7), sphere=None, ): """Plot 2D topography of GLM data. Parameters ---------- conditions : array Which conditions should be displayed. axes : instance of Axes | None The axes to plot to. If None, a new figure is used. vlim : tuple of length 2 Colormap limits to use. If a :class:`tuple` of floats, specifies the lower and upper bounds of the colormap (in that order); providing ``None`` for either entry will set the corresponding boundary at the positive or negative max of the absolute value of the data. vmin : float | None Deprecated, use vlim instead. vmax : float | None Deprecated, use vlim instead. colorbar : Bool Should a colorbar be plotted. figsize : two values Figure size. sphere : As specified in MNE Sphere parameter from mne.viz.topomap.plot_topomap. Returns ------- fig : figure Figure of each design matrix component for hbo (top row) and hbr (bottom row). """ return _plot_glm_topo( self.info, self._data, self.design, requested_conditions=conditions, axes=axes, vlim=vlim, vmin=vmin, vmax=vmax, colorbar=colorbar, figsize=figsize, sphere=sphere, )
[docs] def to_dataframe_region_of_interest( self, group_by, condition, weighted=True, demographic_info=False ): """Region of interest results as a dataframe. Parameters ---------- group_by : dict Specifies which channels are aggregated into a single ROI. The dict key will be used as the ROI label and the dict values must be lists of picks (either channel names or integer indices of ``epochs.ch_names``). For example:: group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8]) condition : str | list Name to be used for condition. weighted : Bool | dict Weighting to be applied to each channel in the ROI computation. If False, then all channels will be weighted equally. If True, channels will be weighted by the inverse of the standard error of the GLM fit. For manual specification of the channel weighting a dictionary can be provided. If a dictionary is provided, the keys and length of lists must match the ``group_by`` parameters. The weights will be scaled internally to sum to 1. demographic_info : Bool Add an extra column with demographic information from info["subject_info"]. Returns ------- tidy : pandas.DataFrame Dataframe containing GLM results. """ if isinstance(condition, str): condition = [condition] if isinstance(weighted, dict): if weighted.keys() != group_by.keys(): raise KeyError("Keys of group_by and weighted must be the same") for key in weighted.keys(): if len(weighted[key]) != len(group_by[key]): raise ValueError( "The length of the keys for group_by and weighted must match" ) if (np.array(weighted[key]) < 0).any(): raise ValueError("Weights must be positive values") tidy = pd.DataFrame() for cond in condition: cond_idx = where([c == cond for c in self.design.columns])[0] if not len(cond_idx): raise KeyError( f"condition {repr(cond)} not found in " f"self.design.columns: {self.design.columns}" ) roi = _glm_region_of_interest( self._data, group_by, cond_idx, cond, weighted ) tidy = pd.concat([tidy, roi]) if weighted is True: tidy["Weighted"] = "Inverse standard error" elif weighted is False: tidy["Weighted"] = "Equal" elif isinstance(weighted, dict): tidy["Weighted"] = "Custom" if demographic_info: if "age" in self.info["subject_info"].keys(): tidy["Age"] = float(self.info["subject_info"]["age"]) if "sex" in self.info["subject_info"].keys(): if self.info["subject_info"]["sex"] == FIFF.FIFFV_SUBJ_SEX_MALE: sex = "male" elif self.info["subject_info"]["sex"] == FIFF.FIFFV_SUBJ_SEX_FEMALE: sex = "female" else: sex = "unknown" tidy["Sex"] = sex if "Hand" in self.info["subject_info"].keys(): tidy["Hand"] = self.info["subject_info"]["hand"] return tidy
[docs] @verbose def surface_projection( self, chroma="hbo", condition=None, background="w", figure=None, clim="auto", mode="weighted", colormap="RdBu_r", surface="pial", hemi="both", size=800, view=None, colorbar=True, distance=0.03, subjects_dir=None, src=None, verbose=False, ): """ Project GLM results on to the surface of the brain. Note: This function provides a convenient wrapper around low level MNE-Python functions. It is convenient if you wish to use a generic head model. If you have acquired fMRI images you may wish to use the underlying lower level functions. Note: This function does not conduct a forward model analysis with photon migration etc. It simply projects the values from each channel to the local cortical surface. It is useful for visualisation, but users should take this in to consideration when drawing conclusions from the visualisation. Parameters ---------- chroma : str Chromophore to plot`. condition : str Condition to plot`. background : matplotlib color Color of the background of the display window. figure : mayavi.core.api.Scene, matplotlib.figure.Figure, list, None If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the Mayavi figure by it's id or create a new figure with the given id. If an instance of matplotlib figure, mpl backend is used for plotting. %(clim)s mode : str Can be "sum" to do a linear sum of weights, "weighted" to make this a weighted sum, "nearest" to use only the weight of the nearest sensor, or "single" to do a distance-weight of the nearest sensor. Default is "sum". colormap : str Colormap to use. surface : str The type of surface (inflated, white etc.). hemi : str Hemisphere id (ie 'lh', 'rh', 'both', or 'split'). In the case of 'both', both hemispheres are shown in the same window. In the case of 'split' hemispheres are displayed side-by-side in different viewing panes. size : float or tuple of float The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. Has no effect with mpl backend. view : str View to set brain to. colorbar : bool If True, display colorbar on scene. distance : float Distance (m) defining the activation "ball" of the sensor. %(subjects_dir)s src : instance of SourceSpaces The source space. %(verbose)s Returns ------- figure : instance of mne.viz.Brain | matplotlib.figure.Figure An instance of :class:`mne.viz.Brain` or matplotlib figure. """ df = self.to_dataframe(order=self.ch_names) if condition is None: warn("You must provide a condition to plot", ValueError) df_use = df.query("Condition in @condition") if len(df_use) == 0: raise KeyError( f"condition={repr(condition)} not found in conditions: " f"{sorted(set(df['Condition']))}" ) df = df_use df = df.query("Chroma in @chroma").copy() df["theta"] = df["theta"] * 1e6 info = self.copy().pick(chroma).info return plot_glm_surface_projection( info, df, value="theta", picks=chroma, background=background, figure=figure, clim=clim, mode=mode, colormap=colormap, surface=surface, hemi=hemi, size=size, view=view, colorbar=colorbar, distance=distance, subjects_dir=subjects_dir, src=src, verbose=verbose, )
[docs] @fill_doc class ContrastResults(_BaseGLM): """ Class containing GLM contrast results. Parameters ---------- info : mne.Info Info. data : dict Dictionary. design : dataframe Design matrix. Returns ------- glm_est : ResultsGLM, Result class. """ def __init__(self, info, data, design): # noqa: D102 self.info = info self.data = data self.design = design self.preload = True def __eq__(self, res): same_design = (self.design == res.design).all().all() same_ch = self.info.ch_names == res.info.ch_names return int(same_ch and same_design) @property def data(self): return self._data @data.setter def data(self, data): if not isinstance(data, nilearn.glm.contrasts.Contrast): raise TypeError("Data must be a nilearn glm contrast type") if data.effect.size != len(self.info.ch_names): raise TypeError( "Data results must be the same length as the number of channels" ) self._data = data
[docs] def plot_topo(self, figsize=(12, 7), sphere=None): """ Plot topomap GLM contrast data. Parameters ---------- figsize : numbers TODO: Remove this, how does MNE usually deal with this. sphere : numbers As specified in MNE. Returns ------- fig : figure Figure of each design matrix component for hbo (top row) and hbr (bottom row). """ return _plot_glm_contrast_topo( self.info, self._data, figsize=figsize, sphere=sphere )
def run_GLM(raw, design_matrix, noise_model="ar1", bins=0, n_jobs=1, verbose=0): """ Run GLM on data using supplied design matrix. This is a wrapper function for nilearn.stats.first_level_model.run_glm. Parameters ---------- raw : instance of Raw The haemoglobin data. design_matrix : as specified in Nilearn The design matrix. noise_model : {'ar1', 'ols', 'arN', 'auto'}, optional The temporal variance model. Defaults to first order auto regressive model 'ar1'. The AR model can be set to any integer value by modifying the value of N. E.g. use `ar5` for a fifth order model. If the string `auto` is provided a model with order 4 times the sample rate will be used. bins : int, optional Maximum number of discrete bins for the AR coef histogram/clustering. By default the value is 0, which will set the number of bins to the number of channels, effectively estimating the AR model for each channel. n_jobs : int, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : int, optional The verbosity level. Default is 0. Returns ------- glm_estimates : dict Keys correspond to the different labels values values are RegressionResults instances corresponding to the voxels. """ warn( '"run_GLM" has been deprecated in favor of the more ' "comprehensive run_glm function, and will be removed in v1.0.0. " "See the changelog for further details.", DeprecationWarning, ) res = run_glm( raw, design_matrix, noise_model=noise_model, bins=bins, n_jobs=n_jobs, verbose=verbose, ) return res.data
[docs] def run_glm(raw, design_matrix, noise_model="ar1", bins=0, n_jobs=1, verbose=0): """ GLM fit for an MNE structure containing fNIRS data. This is a wrapper function for nilearn.stats.first_level_model.run_glm. Parameters ---------- raw : instance of Raw The haemoglobin data. design_matrix : as specified in Nilearn The design matrix as generated by `mne_nirs.make_first_level_design_matrix`. See example ``9.5.5. Examples of design matrices`` at https://nilearn.github.io/auto_examples/index.html for details on how to specify design matrices. noise_model : {'ar1', 'ols', 'arN', 'auto'}, optional The temporal variance model. Defaults to first order auto regressive model 'ar1'. The AR model can be set to any integer value by modifying the value of N. E.g. use `ar5` for a fifth order model. If the string `auto` is provided a model with order 4 times the sample rate will be used. bins : int, optional Maximum number of discrete bins for the AR coef histogram/clustering. By default the value is 0, which will set the number of bins to the number of channels, effectively estimating the AR model for each channel. n_jobs : int, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : int, optional The verbosity level. Default is 0. Returns ------- glm_estimates : RegressionResults RegressionResults class which stores the GLM results. """ picks = _picks_to_idx(raw.info, "fnirs", exclude=[], allow_empty=True) ch_names = raw.ch_names if noise_model == "auto": noise_model = f"ar{int(np.round(raw.info['sfreq'] * 4))}" if bins == 0: bins = len(raw.ch_names) results = dict() for pick in picks: labels, glm_estimates = nilearn_glm( raw.get_data(pick).T, design_matrix.values, noise_model=noise_model, bins=bins, n_jobs=n_jobs, verbose=verbose, ) results[ch_names[pick]] = glm_estimates[labels[0]] return RegressionResults(raw.info, results, design_matrix)
def _compute_contrast(glm_est, contrast, contrast_type=None): from nilearn.glm.contrasts import compute_contrast as _cc key = "contrast_type" _ccc = _cc if hasattr(_cc, "__wrapped__"): _ccc = _cc.__wrapped__ key = "stat_type" if "stat_type" in getfullargspec(_ccc).args else "contrast_type" return _cc( np.array(list(glm_est.keys())), glm_est, contrast, **{key: contrast_type} )
[docs] def read_glm(fname): """ Read GLM results from disk. Parameters ---------- fname : str The file name, which should end with ``glm.h5``. Returns ------- glm : RegressionResults or ContrastResults RegressionResults or ContrastResults class which stores the GLM results. """ check_fname(fname, "path-like", "glm.h5") glm = read_hdf5(fname, title="mnepython") return _state_to_glm(glm)
def _state_to_glm(glm): """ Convert state of GLM stored as dictionary to a MNE-NIRS GLM type. Parameters ---------- glm : dict State of GLM type. Returns ------- glm : _BaseGLM RegressionResults or ContrastResults class which stores the GLM results. """ if ( glm["classname"] == "<class 'mne_nirs.statistics._glm_level_first" ".RegressionResults'>" ): for channel in glm["data"]: # Recreate model type if ( glm["data"][channel]["modelname"] == "<class 'nilearn.glm.regression.ARModel'>" ): model = nilearn.glm.regression.ARModel( glm["data"][channel]["model"]["design"], glm["data"][channel]["model"]["rho"], ) elif ( glm["data"][channel]["modelname"] == "<class 'nilearn.glm.regression.OLSModel'>" ): model = nilearn.glm.regression.OLSModel( glm["data"][channel]["model"]["design"], ) else: raise OSError(f"Unknown model type {glm['data'][channel]['modelname']}") for key in glm["data"][channel]["model"]: model.__setattr__(key, glm["data"][channel]["model"][key]) glm["data"][channel]["model"] = model # Then recreate result type res = nilearn.glm.regression.RegressionResults( glm["data"][channel]["theta"], glm["data"][channel]["Y"], glm["data"][channel]["model"], glm["data"][channel]["whitened_Y"], glm["data"][channel]["whitened_residuals"], cov=glm["data"][channel]["cov"], ) for key in glm["data"][channel]: res.__setattr__(key, glm["data"][channel][key]) glm["data"][channel] = res # Ensure order of dictionary matches info data = {k: glm["data"][k] for k in glm["info"]["ch_names"]} return RegressionResults(Info(glm["info"]), data, glm["design"]) elif ( glm["classname"] == "<class 'mne_nirs.statistics._glm_level_first" ".ContrastResults'>" ): data = nilearn.glm.contrasts.Contrast( glm["data"]["effect"], glm["data"]["variance"] ) for key in glm["data"]: data.__setattr__(key, glm["data"][key]) return ContrastResults(Info(glm["info"]), data, glm["design"]) else: raise OSError("Unable to read data")