Source code for mne.io.snirf._snirf

# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.

import datetime
import re

import numpy as np

from ..._fiff._digitization import _make_dig_points
from ..._fiff.constants import FIFF
from ..._fiff.meas_info import _format_dig_points, create_info
from ..._fiff.utils import _mult_cal_one
from ..._freesurfer import get_mni_fiducials
from ...annotations import Annotations
from ...transforms import _frame_to_str, apply_trans
from ...utils import _check_fname, _import_h5py, fill_doc, logger, verbose, warn
from ..base import BaseRaw
from ..nirx.nirx import _convert_fnirs_to_head


[docs] @fill_doc def read_raw_snirf( fname, optode_frame="unknown", preload=False, verbose=None ) -> "RawSNIRF": """Reader for a continuous wave SNIRF data. .. note:: This reader supports the .snirf file type only, not the .jnirs version. Files with either 3D or 2D locations can be read. However, we strongly recommend using 3D positions. If 2D positions are used the behaviour of MNE functions can not be guaranteed. Parameters ---------- fname : path-like Path to the SNIRF data file. optode_frame : str Coordinate frame used for the optode positions. The default is unknown, in which case the positions are not modified. If a known coordinate frame is provided (head, meg, mri), then the positions are transformed in to the Neuromag head coordinate frame (head). %(preload)s %(verbose)s Returns ------- raw : instance of RawSNIRF A Raw object containing fNIRS data. See :class:`mne.io.Raw` for documentation of attributes and methods. See Also -------- mne.io.Raw : Documentation of attributes and methods of RawSNIRF. """ return RawSNIRF(fname, optode_frame, preload, verbose)
def _open(fname): return open(fname, encoding="latin-1") @fill_doc class RawSNIRF(BaseRaw): """Raw object from a continuous wave SNIRF file. Parameters ---------- fname : path-like Path to the SNIRF data file. optode_frame : str Coordinate frame used for the optode positions. The default is unknown, in which case the positions are not modified. If a known coordinate frame is provided (head, meg, mri), then the positions are transformed in to the Neuromag head coordinate frame (head). %(preload)s %(verbose)s See Also -------- mne.io.Raw : Documentation of attributes and methods. """ @verbose def __init__(self, fname, optode_frame="unknown", preload=False, verbose=None): # Must be here due to circular import error from ...preprocessing.nirs import _validate_nirs_info h5py = _import_h5py() fname = str(_check_fname(fname, "read", True, "fname")) logger.info(f"Loading {fname}") with h5py.File(fname, "r") as dat: if "data2" in dat["nirs"]: warn( "File contains multiple recordings. " "MNE does not support this feature. " "Only the first dataset will be processed." ) manufacturer = _get_metadata_str(dat, "ManufacturerName") if (optode_frame == "unknown") & (manufacturer == "Gowerlabs"): optode_frame = "head" snirf_data_type = np.array( dat.get("nirs/data1/measurementList1/dataType") ).item() if snirf_data_type not in [1, 99999]: # 1 = Continuous Wave # 99999 = Processed raise RuntimeError( "MNE only supports reading continuous" " wave amplitude and processed haemoglobin" " SNIRF files. Expected type" " code 1 or 99999 but received type " f"code {snirf_data_type}" ) last_samps = dat.get("/nirs/data1/dataTimeSeries").shape[0] - 1 sampling_rate = _extract_sampling_rate(dat) if sampling_rate == 0: warn("Unable to extract sample rate from SNIRF file.") # Extract wavelengths fnirs_wavelengths = np.array(dat.get("nirs/probe/wavelengths")) fnirs_wavelengths = [int(w) for w in fnirs_wavelengths] if len(fnirs_wavelengths) != 2: raise RuntimeError( f"The data contains " f"{len(fnirs_wavelengths)}" f" wavelengths: {fnirs_wavelengths}. " f"MNE only supports reading continuous" " wave amplitude SNIRF files " "with two wavelengths." ) # Extract channels def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): return [atoi(c) for c in re.split(r"(\d+)", text)] channels = np.array([name for name in dat["nirs"]["data1"].keys()]) channels_idx = np.array(["measurementList" in n for n in channels]) channels = channels[channels_idx] channels = sorted(channels, key=natural_keys) # Source and detector labels are optional fields. # Use S1, S2, S3, etc if not specified. if "sourceLabels_disabled" in dat["nirs/probe"]: # This is disabled as # MNE-Python does not currently support custom source names. # Instead, sources must be integer values. sources = np.array(dat.get("nirs/probe/sourceLabels")) sources = [s.decode("UTF-8") for s in sources] else: sources = np.unique( [ _correct_shape( np.array(dat.get("nirs/data1/" + c + "/sourceIndex")) )[0] for c in channels ] ) sources = {int(s): f"S{int(s)}" for s in sources} if "detectorLabels_disabled" in dat["nirs/probe"]: # This is disabled as # MNE-Python does not currently support custom detector names. # Instead, detector must be integer values. detectors = np.array(dat.get("nirs/probe/detectorLabels")) detectors = [d.decode("UTF-8") for d in detectors] else: detectors = np.unique( [ _correct_shape( np.array(dat.get("nirs/data1/" + c + "/detectorIndex")) )[0] for c in channels ] ) detectors = {int(d): f"D{int(d)}" for d in detectors} # Extract source and detector locations # 3D positions are optional in SNIRF, # but highly recommended in MNE. if ("detectorPos3D" in dat["nirs/probe"]) & ( "sourcePos3D" in dat["nirs/probe"] ): # If 3D positions are available they are used even if 2D exists detPos3D = np.array(dat.get("nirs/probe/detectorPos3D")) srcPos3D = np.array(dat.get("nirs/probe/sourcePos3D")) elif ("detectorPos2D" in dat["nirs/probe"]) & ( "sourcePos2D" in dat["nirs/probe"] ): warn( "The data only contains 2D location information for the " "optode positions. " "It is highly recommended that data is used " "which contains 3D location information for the " "optode positions. With only 2D locations it can not be " "guaranteed that MNE functions will behave correctly " "and produce accurate results. If it is not possible to " "include 3D positions in your data, please consider " "using the set_montage() function." ) detPos2D = np.array(dat.get("nirs/probe/detectorPos2D")) srcPos2D = np.array(dat.get("nirs/probe/sourcePos2D")) # Set the third dimension to zero. See gh#9308 detPos3D = np.append(detPos2D, np.zeros((detPos2D.shape[0], 1)), axis=1) srcPos3D = np.append(srcPos2D, np.zeros((srcPos2D.shape[0], 1)), axis=1) else: raise RuntimeError( "No optode location information is " "provided. MNE requires at least 2D " "location information" ) chnames = [] ch_types = [] for chan in channels: src_idx = int( _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/sourceIndex")) )[0] ) det_idx = int( _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/detectorIndex")) )[0] ) if snirf_data_type == 1: wve_idx = int( _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/wavelengthIndex")) )[0] ) ch_name = ( sources[src_idx] + "_" + detectors[det_idx] + " " + str(fnirs_wavelengths[wve_idx - 1]) ) chnames.append(ch_name) ch_types.append("fnirs_cw_amplitude") elif snirf_data_type == 99999: dt_id = _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/dataTypeLabel")) )[0].decode("UTF-8") # Convert between SNIRF processed names and MNE type names dt_id = dt_id.lower().replace("dod", "fnirs_od") ch_name = sources[src_idx] + "_" + detectors[det_idx] if dt_id == "fnirs_od": wve_idx = int( _correct_shape( np.array( dat.get("nirs/data1/" + chan + "/wavelengthIndex") ) )[0] ) suffix = " " + str(fnirs_wavelengths[wve_idx - 1]) else: suffix = " " + dt_id.lower() ch_name = ch_name + suffix chnames.append(ch_name) ch_types.append(dt_id) # Create mne structure info = create_info(chnames, sampling_rate, ch_types=ch_types) subject_info = {} names = np.array(dat.get("nirs/metaDataTags/SubjectID")) names = _correct_shape(names)[0].decode("UTF-8") subject_info["his_id"] = names # Read non standard (but allowed) custom metadata tags if "lastName" in dat.get("nirs/metaDataTags/"): ln = dat.get("/nirs/metaDataTags/lastName")[0].decode("UTF-8") subject_info["last_name"] = ln if "middleName" in dat.get("nirs/metaDataTags/"): m = dat.get("/nirs/metaDataTags/middleName")[0].decode("UTF-8") subject_info["middle_name"] = m if "firstName" in dat.get("nirs/metaDataTags/"): fn = dat.get("/nirs/metaDataTags/firstName")[0].decode("UTF-8") subject_info["first_name"] = fn else: # MNE < 1.7 used to not write the firstName tag, so pull it from names subject_info["first_name"] = names.split("_")[0] if "sex" in dat.get("nirs/metaDataTags/"): s = dat.get("/nirs/metaDataTags/sex")[0].decode("UTF-8") if s in {"M", "Male", "1", "m"}: subject_info["sex"] = FIFF.FIFFV_SUBJ_SEX_MALE elif s in {"F", "Female", "2", "f"}: subject_info["sex"] = FIFF.FIFFV_SUBJ_SEX_FEMALE elif s in {"0", "u"}: subject_info["sex"] = FIFF.FIFFV_SUBJ_SEX_UNKNOWN # End non standard name reading # Update info info.update(subject_info=subject_info) length_unit = _get_metadata_str(dat, "LengthUnit") length_scaling = _get_lengthunit_scaling(length_unit) srcPos3D /= length_scaling detPos3D /= length_scaling if optode_frame in ["mri", "meg"]: # These are all in MNI or MEG coordinates, so let's transform # them to the Neuromag head coordinate frame srcPos3D, detPos3D, _, head_t = _convert_fnirs_to_head( "fsaverage", optode_frame, "head", srcPos3D, detPos3D, [] ) else: head_t = np.eye(4) if optode_frame in ["head", "mri", "meg"]: # Then the transformation to head was performed above coord_frame = FIFF.FIFFV_COORD_HEAD elif "MNE_coordFrame" in dat.get("nirs/metaDataTags/"): coord_frame = int(dat.get("/nirs/metaDataTags/MNE_coordFrame")[0]) else: coord_frame = FIFF.FIFFV_COORD_UNKNOWN for idx, chan in enumerate(channels): src_idx = int( _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/sourceIndex")) )[0] ) det_idx = int( _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/detectorIndex")) )[0] ) info["chs"][idx]["loc"][3:6] = srcPos3D[src_idx - 1, :] info["chs"][idx]["loc"][6:9] = detPos3D[det_idx - 1, :] # Store channel as mid point midpoint = ( info["chs"][idx]["loc"][3:6] + info["chs"][idx]["loc"][6:9] ) / 2 info["chs"][idx]["loc"][0:3] = midpoint info["chs"][idx]["coord_frame"] = coord_frame if (snirf_data_type in [1]) or ( (snirf_data_type == 99999) and (ch_types[idx] == "fnirs_od") ): wve_idx = int( _correct_shape( np.array(dat.get("nirs/data1/" + chan + "/wavelengthIndex")) )[0] ) info["chs"][idx]["loc"][9] = fnirs_wavelengths[wve_idx - 1] if "landmarkPos3D" in dat.get("nirs/probe/"): diglocs = np.array(dat.get("/nirs/probe/landmarkPos3D")) diglocs /= length_scaling digname = np.array(dat.get("/nirs/probe/landmarkLabels")) nasion, lpa, rpa, hpi = None, None, None, None extra_ps = dict() for idx, dign in enumerate(digname): dign = dign.lower() if dign in [b"lpa", b"al"]: lpa = diglocs[idx, :3] elif dign in [b"nasion"]: nasion = diglocs[idx, :3] elif dign in [b"rpa", b"ar"]: rpa = diglocs[idx, :3] else: extra_ps[f"EEG{len(extra_ps) + 1:03d}"] = diglocs[idx, :3] add_missing_fiducials = ( coord_frame == FIFF.FIFFV_COORD_HEAD and lpa is None and rpa is None and nasion is None ) dig = _make_dig_points( nasion=nasion, lpa=lpa, rpa=rpa, hpi=hpi, dig_ch_pos=extra_ps, coord_frame=_frame_to_str[coord_frame], add_missing_fiducials=add_missing_fiducials, ) else: ch_locs = [info["chs"][idx]["loc"][0:3] for idx in range(len(channels))] # Set up digitization dig = get_mni_fiducials("fsaverage", verbose=False) for fid in dig: fid["r"] = apply_trans(head_t, fid["r"]) fid["coord_frame"] = FIFF.FIFFV_COORD_HEAD for ii, ch_loc in enumerate(ch_locs, 1): dig.append( dict( kind=FIFF.FIFFV_POINT_EEG, # misnomer prob okay r=ch_loc, ident=ii, coord_frame=FIFF.FIFFV_COORD_HEAD, ) ) dig = _format_dig_points(dig) del head_t with info._unlock(): info["dig"] = dig str_date = _correct_shape( np.array(dat.get("/nirs/metaDataTags/MeasurementDate")) )[0].decode("UTF-8") str_time = _correct_shape( np.array(dat.get("/nirs/metaDataTags/MeasurementTime")) )[0].decode("UTF-8") str_datetime = str_date + str_time # Several formats have been observed so we try each in turn for dt_code in [ "%Y-%m-%d%H:%M:%SZ", "%Y-%m-%d%H:%M:%S", "%Y-%m-%d%H:%M:%S.%f", "%Y-%m-%d%H:%M:%S.%f%z", ]: try: meas_date = datetime.datetime.strptime(str_datetime, dt_code) except ValueError: pass else: break else: warn( "Extraction of measurement date from SNIRF file failed. " "The date is being set to January 1st, 2000, " f"instead of {str_datetime}" ) meas_date = datetime.datetime(2000, 1, 1, 0, 0, 0) meas_date = meas_date.replace(tzinfo=datetime.timezone.utc) with info._unlock(): info["meas_date"] = meas_date if "DateOfBirth" in dat.get("nirs/metaDataTags/"): str_birth = ( np.array(dat.get("/nirs/metaDataTags/DateOfBirth")).item().decode() ) birth_matched = re.fullmatch(r"(\d+)-(\d+)-(\d+)", str_birth) if birth_matched is not None: birthday = datetime.date( int(birth_matched.groups()[0]), int(birth_matched.groups()[1]), int(birth_matched.groups()[2]), ) with info._unlock(): info["subject_info"]["birthday"] = birthday super().__init__( info, preload, filenames=[fname], last_samps=[last_samps], verbose=verbose, ) # Extract annotations # As described at https://github.com/fNIRS/snirf/ # blob/master/snirf_specification.md#nirsistimjdata annot = Annotations([], [], []) for key in dat["nirs"]: if "stim" in key: data = np.atleast_2d(np.array(dat.get("/nirs/" + key + "/data"))) if data.shape[1] >= 3: desc = _correct_shape( np.array(dat.get("/nirs/" + key + "/name")) )[0] annot.append(data[:, 0], data[:, 1], desc.decode("UTF-8")) self.set_annotations(annot, emit_warning=False) # Validate that the fNIRS info is correctly formatted _validate_nirs_info(self.info) def _read_segment_file(self, data, idx, fi, start, stop, cals, mult): """Read a segment of data from a file.""" import h5py with h5py.File(self._filenames[0], "r") as dat: one = dat["/nirs/data1/dataTimeSeries"][start:stop].T _mult_cal_one(data, one, idx, cals, mult) # Helper function for when the numpy array has shape (), i.e. just one element. def _correct_shape(arr): if arr.shape == (): arr = arr[np.newaxis] return arr def _get_timeunit_scaling(time_unit): """MNE expects time in seconds, return required scaling.""" scalings = {"ms": 1000, "s": 1, "unknown": 1} if time_unit in scalings: return scalings[time_unit] else: raise RuntimeError( f"The time unit {time_unit} is not supported by " "MNE. Please report this error as a GitHub " "issue to inform the developers." ) def _get_lengthunit_scaling(length_unit): """MNE expects distance in m, return required scaling.""" scalings = {"m": 1, "cm": 100, "mm": 1000} if length_unit in scalings: return scalings[length_unit] else: raise RuntimeError( f"The length unit {length_unit} is not supported " "by MNE. Please report this error as a GitHub " "issue to inform the developers." ) def _extract_sampling_rate(dat): """Extract the sample rate from the time field.""" # This is a workaround to provide support for Artinis data. # It allows for a 1% variation in the sampling times relative # to the average sampling rate of the file. MAXIMUM_ALLOWED_SAMPLING_JITTER_PERCENTAGE = 1.0 time_data = np.array(dat.get("nirs/data1/time")) sampling_rate = 0 if len(time_data) == 2: # specified as onset, samplerate sampling_rate = 1.0 / (time_data[1] - time_data[0]) else: # specified as time points periods = np.diff(time_data) uniq_periods = np.unique(periods.round(decimals=4)) if uniq_periods.size == 1: # Uniformly sampled data sampling_rate = 1.0 / uniq_periods.item() else: # Hopefully uniformly sampled data with some precision issues. # This is a workaround to provide support for Artinis data. mean_period = np.mean(periods) sampling_rate = 1.0 / mean_period ideal_times = np.linspace(time_data[0], time_data[-1], time_data.size) max_jitter = np.max(np.abs(time_data - ideal_times)) percent_jitter = 100.0 * max_jitter / mean_period msg = ( f"Found jitter of {percent_jitter:3f}% in sample times. Sampling " f"rate has been set to {sampling_rate:1f}." ) if percent_jitter > MAXIMUM_ALLOWED_SAMPLING_JITTER_PERCENTAGE: warn( f"{msg} Note that MNE-Python does not currently support SNIRF " "files with non-uniformly-sampled data." ) else: logger.info(msg) time_unit = _get_metadata_str(dat, "TimeUnit") time_unit_scaling = _get_timeunit_scaling(time_unit) sampling_rate *= time_unit_scaling return sampling_rate def _get_metadata_str(dat, field): if field not in np.array(dat.get("nirs/metaDataTags")): return None data = dat.get(f"/nirs/metaDataTags/{field}") data = _correct_shape(np.array(data)) data = str(data[0], "utf-8") return data