Source code for mne_nirs.preprocessing._scalp_coupling_segmented
# Authors: Robert Luke <mail@robertluke.net>
#
# License: BSD (3-clause)
import numpy as np
from mne.filter import filter_data
from mne.io import BaseRaw
from mne.preprocessing.nirs import _validate_nirs_info
from mne.utils import _validate_type, verbose
[docs]
@verbose
def scalp_coupling_index_windowed(
raw,
time_window=10,
threshold=0.1,
l_freq=0.7,
h_freq=1.5,
l_trans_bandwidth=0.3,
h_trans_bandwidth=0.3,
verbose=False,
):
"""
Compute scalp coupling index for each channel and time window.
As described in [1]_ and [2]_.
This method provides a metric of data quality along the duration of
the measurement. The user can specify the window over which the
metric is computed.
Parameters
----------
raw : instance of Raw
The haemoglobin data.
time_window : number
The duration of the window over which to calculate the metric.
Default is 10 seconds as in PHOEBE paper.
threshold : number
Values below this are marked as bad and annotated in the raw file.
%(l_freq)s
%(h_freq)s
%(l_trans_bandwidth)s
%(h_trans_bandwidth)s
%(verbose)s
Returns
-------
raw : instance of Raw
The Raw data. Optionally annotated with bad segments.
scores : array (n_nirs, n_windows)
Array of peak power values.
times : list
List of the start and end times of each window used to compute the
peak spectral power.
References
----------
.. [1] Pollonini L et al., “PHOEBE: a method for real time mapping of
optodes-scalp coupling in functional near-infrared spectroscopy” in
Biomed. Opt. Express 7, 5104-5119 (2016).
.. [2] Hernandez, Samuel Montero, and Luca Pollonini. "NIRSplot: a tool for
quality assessment of fNIRS scans." Optics and the Brain.
Optical Society of America, 2020.
"""
raw = raw.copy().load_data()
_validate_type(raw, BaseRaw, "raw")
picks = _validate_nirs_info(raw.info, fnirs="od", which="Scalp coupling index")
filtered_data = filter_data(
raw._data,
raw.info["sfreq"],
l_freq,
h_freq,
picks=picks,
verbose=verbose,
l_trans_bandwidth=l_trans_bandwidth,
h_trans_bandwidth=h_trans_bandwidth,
)
window_samples = int(np.ceil(time_window * raw.info["sfreq"]))
n_windows = int(np.floor(len(raw) / window_samples))
scores = np.zeros((len(picks), n_windows))
times = []
for window in range(n_windows):
start_sample = int(window * window_samples)
end_sample = start_sample + window_samples
end_sample = np.min([end_sample, len(raw) - 1])
t_start = raw.times[start_sample]
t_stop = raw.times[end_sample]
times.append((t_start, t_stop))
for ii in range(0, len(picks), 2):
c1 = filtered_data[picks[ii]][start_sample:end_sample]
c2 = filtered_data[picks[ii + 1]][start_sample:end_sample]
c = np.corrcoef(c1, c2)[0][1]
scores[ii, window] = c
scores[ii + 1, window] = c
if (threshold is not None) & (c < threshold):
raw.annotations.append(
t_start,
time_window,
"BAD_SCI",
ch_names=[raw.ch_names[ii : ii + 2]],
)
scores = scores[np.argsort(picks)]
return raw, scores, times