mne.cov.compute_whitener¶
-
mne.cov.
compute_whitener
(noise_cov, info=None, picks=None, rank=None, scalings=None, return_rank=False, pca=False, return_colorer=False, verbose=None)[source]¶ Compute whitening matrix.
- Parameters
- noise_cov
Covariance
The noise covariance.
- info
dict
|None
The measurement info. Can be None if
noise_cov
has already been prepared withprepare_noise_cov()
.- picks
str
|list
|slice
|None
Channels to include. Slices and lists of integers will be interpreted as channel indices. In lists, channel type strings (e.g.,
['meg', 'eeg']
) will pick channels of those types, channel name strings (e.g.,['MEG0111', 'MEG2623']
will pick the given channels. Can also be the string values “all” to pick all channels, or “data” to pick data channels. None (default) will pick good data channels(excluding reference MEG channels).- rank
None
|dict
| ‘info’ | ‘full’ This controls the rank computation that can be read from the measurement info or estimated from the data. See
Notes
ofmne.compute_rank()
for details.The default is None.New in version 0.18: Support for ‘info’ mode.
- scalings
dict
|None
The rescaling method to be applied. See documentation of
prepare_noise_cov
for details.- return_rankbool
If True, return the rank used to compute the whitener.
New in version 0.15.
- pcabool |
str
Space to project the data into. Options:
True
Whitener will be shape (n_nonzero, n_channels).
'white'
Whitener will be shape (n_channels, n_channels), potentially rank deficient, and have the first
n_channels - n_nonzero
rows and columns set to zero.False
(default)Whitener will be shape (n_channels, n_channels), potentially rank deficient, and rotated back to the space of the original data.
New in version 0.18.
- return_colorerbool
If True, return the colorer as well.
- verbosebool,
str
,int
, orNone
If not None, override default verbose level (see
mne.verbose()
and Logging documentation for more). If used, it should be passed as a keyword-argument only.
- noise_cov
- Returns