Note
Click here to download the full example code or to run this example in your browser via Binder
Convert MNE sample data to BIDS format¶
This example demonstrates how to convert your existing files into a BIDS-compatible folder.
# Authors: Mainak Jas <mainak.jas@telecom-paristech.fr>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Teon Brooks <teon.brooks@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
Let us import mne_bids
import os.path as op
from datetime import datetime
import mne
from mne.datasets import sample
from mne_bids import write_raw_bids, read_raw_bids, make_bids_basename
from mne_bids.utils import print_dir_tree
And define the paths and event_id dictionary.
data_path = sample.data_path()
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2, 'Visual/Left': 3,
'Visual/Right': 4, 'Smiley': 5, 'Button': 32}
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw.fif')
events_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-eve.fif')
output_path = op.join(data_path, '..', 'MNE-sample-data-bids')
Specify the raw_file and events_data and run the BIDS conversion.
raw = mne.io.read_raw_fif(raw_fname)
bids_basename = make_bids_basename(subject='01', session='01',
task='audiovisual', run='01')
write_raw_bids(raw, bids_basename, output_path, events_data=events_data,
event_id=event_id, overwrite=True)
Out:
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Creating folder: /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.tsv'...
participant_id age sex
sub-01 n/a n/a
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.json'...
{
"participant_id": {
"Description": "Unique participant identifier"
},
"age": {
"Description": "Age of the participant at time of testing",
"Units": "years"
},
"sex": {
"Description": "Biological sex of the participant",
"Levels": {
"F": "female",
"M": "male"
}
}
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/sub-01_ses-01_scans.tsv'...
filename acq_time
meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif 2002-12-03T20:01:10
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_coordsystem.json'...
{
"MEGCoordinateSystem": "Elekta",
"MEGCoordinateUnits": "m",
"HeadCoilCoordinates": {
"NAS": [
3.725290298461914e-09,
0.10260561108589172,
4.190951585769653e-09
],
"LPA": [
-0.07137660682201385,
0.0,
5.122274160385132e-09
],
"RPA": [
0.07526767998933792,
0.0,
5.587935447692871e-09
],
"coil1": [
0.032922741025686264,
0.09897983074188232,
0.07984329760074615
],
"coil2": [
-0.06998106092214584,
0.06771647930145264,
0.06888450682163239
],
"coil3": [
-0.07260829955339432,
-0.02086828649044037,
0.0971473976969719
],
"coil4": [
0.04996863007545471,
-0.007233052980154753,
0.1228904277086258
]
},
"HeadCoilCoordinateSystem": "RAS",
"HeadCoilCoordinateUnits": "m"
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_events.tsv'...
onset duration trial_type value sample
3.6246181587150867 0.0 Auditory/Right 2 2177
4.237323479067476 0.0 Visual/Left 3 2545
4.946596485779753 0.0 Auditory/Left 1 2971
5.692498614904401 0.0 Visual/Right 4 3419
6.41342634238425 0.0 Auditory/Right 2 3852
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/dataset_description.json'...
{
"Name": " ",
"BIDSVersion": "1.2.0"
}
/home/stefanappelhoff/Desktop/bids/mne-bids/mne_bids/write.py:407: UserWarning: No line frequency found, defaulting to 50 Hz
warn('No line frequency found, defaulting to 50 Hz')
Reading 0 ... 166799 = 0.000 ... 277.714 secs...
/home/stefanappelhoff/miniconda3/envs/mne_bids3/lib/python3.6/site-packages/mne/utils/docs.py:830: DeprecationWarning: Function read_montage is deprecated; ``read_montage`` is deprecated and will be removed in v0.20. Please use ``read_dig_fif``, ``read_dig_egi``, ``read_custom_montage``, or ``read_dig_captrack`` to read a digitization based on your needs instead; or ``make_standard_montage`` to create ``DigMontage`` based on template; or ``make_dig_montage`` to create a ``DigMontage`` out of np.arrays
warnings.warn(msg, category=DeprecationWarning)
/home/stefanappelhoff/miniconda3/envs/mne_bids3/lib/python3.6/site-packages/mne/utils/docs.py:813: DeprecationWarning: Class Montage is deprecated; Montage class is deprecated and will be removed in v0.20. Please use DigMontage instead.
warnings.warn(msg, category=DeprecationWarning)
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.json'...
{
"TaskName": "audiovisual",
"Manufacturer": "Elekta",
"PowerLineFrequency": 50,
"SamplingFrequency": 600.614990234375,
"SoftwareFilters": "n/a",
"RecordingDuration": 277.7136813300495,
"RecordingType": "continuous",
"DewarPosition": "n/a",
"DigitizedLandmarks": false,
"DigitizedHeadPoints": false,
"MEGChannelCount": 306,
"MEGREFChannelCount": 0,
"EEGChannelCount": 60,
"EOGChannelCount": 1,
"ECGChannelCount": 0,
"EMGChannelCount": 0,
"MiscChannelCount": 0,
"TriggerChannelCount": 9
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_channels.tsv'...
name type units low_cutoff high_cutoff description sampling_frequency status
MEG 0113 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0112 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0111 MEGMAG T 0.10000000149011612 172.17630004882812 Magnetometer 600.614990234375 good
MEG 0122 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0123 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
Copying data files to /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif
Overwriting existing file.
Writing /home/stefanappelhoff/mne_data/MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif
Closing /home/stefanappelhoff/mne_data/MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif [done]
'/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids'
Specify some empty room data and run BIDS conversion on it.
er_raw_fname = op.join(data_path, 'MEG', 'sample', 'ernoise_raw.fif')
er_raw = mne.io.read_raw_fif(er_raw_fname)
# For empty room data we need to specify that the subject ID is
# 'emptyroom', and that the task is 'noise'.
# We also need to specify the recording date in the format YYYYMMDD for the
# session id.
er_date = datetime.fromtimestamp(
er_raw.info['meas_date'][0]).strftime('%Y%m%d')
er_bids_basename = 'sub-emptyroom_ses-{0}_task-noise'.format(er_date)
write_raw_bids(er_raw, er_bids_basename, output_path, overwrite=True)
Out:
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/MEG/sample/ernoise_raw.fif...
Isotrak not found
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 19800 ... 85867 = 32.966 ... 142.965 secs
Ready.
Current compensation grade : 0
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/MEG/sample/ernoise_raw.fif...
Isotrak not found
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 19800 ... 85867 = 32.966 ... 142.965 secs
Ready.
Current compensation grade : 0
Creating folder: /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-emptyroom/ses-20021206/meg
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.tsv'...
participant_id age sex
sub-01 n/a n/a
sub-emptyroom n/a n/a
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/participants.json'...
{
"participant_id": {
"Description": "Unique participant identifier"
},
"age": {
"Description": "Age of the participant at time of testing",
"Units": "years"
},
"sex": {
"Description": "Biological sex of the participant",
"Levels": {
"F": "female",
"M": "male"
}
}
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-emptyroom/ses-20021206/sub-emptyroom_ses-20021206_scans.tsv'...
filename acq_time
meg/sub-emptyroom_ses-20021206_task-noise_meg.fif 2002-12-06T16:16:18
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/dataset_description.json'...
{
"Name": " ",
"BIDSVersion": "1.2.0"
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-emptyroom/ses-20021206/meg/sub-emptyroom_ses-20021206_task-noise_meg.json'...
{
"TaskName": "noise",
"Manufacturer": "Elekta",
"PowerLineFrequency": 50,
"SamplingFrequency": 600.614990234375,
"SoftwareFilters": "n/a",
"RecordingDuration": 109.9989195644601,
"RecordingType": "continuous",
"DewarPosition": "n/a",
"DigitizedLandmarks": false,
"DigitizedHeadPoints": false,
"MEGChannelCount": 306,
"MEGREFChannelCount": 0,
"EEGChannelCount": 0,
"EOGChannelCount": 0,
"ECGChannelCount": 0,
"EMGChannelCount": 0,
"MiscChannelCount": 0,
"TriggerChannelCount": 9
}
Writing '/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-emptyroom/ses-20021206/meg/sub-emptyroom_ses-20021206_task-noise_channels.tsv'...
name type units low_cutoff high_cutoff description sampling_frequency status
MEG 0113 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0112 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0111 MEGMAG T 0.10000000149011612 172.17630004882812 Magnetometer 600.614990234375 good
MEG 0122 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
MEG 0123 MEGGRADPLANAR T/m 0.10000000149011612 172.17630004882812 Planar Gradiometer 600.614990234375 good
Copying data files to /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-emptyroom/ses-20021206/meg/sub-emptyroom_ses-20021206_task-noise_meg.fif
Writing /home/stefanappelhoff/mne_data/MNE-sample-data-bids/sub-emptyroom/ses-20021206/meg/sub-emptyroom_ses-20021206_task-noise_meg.fif
Closing /home/stefanappelhoff/mne_data/MNE-sample-data-bids/sub-emptyroom/ses-20021206/meg/sub-emptyroom_ses-20021206_task-noise_meg.fif [done]
'/home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids'
Now let’s see the structure of the BIDS folder we created.
print_dir_tree(output_path)
Out:
|MNE-sample-data-bids/
|--- participants.tsv
|--- dataset_description.json
|--- participants.json
|--- sub-emptyroom/
|------ ses-20021206/
|--------- sub-emptyroom_ses-20021206_scans.tsv
|--------- meg/
|------------ sub-emptyroom_ses-20021206_task-noise_meg.json
|------------ sub-emptyroom_ses-20021206_task-noise_channels.tsv
|------------ sub-emptyroom_ses-20021206_task-noise_meg.fif
|--- sub-01/
|------ ses-01/
|--------- sub-01_ses-01_scans.tsv
|--------- meg/
|------------ sub-01_ses-01_coordsystem.json
|------------ sub-01_ses-01_task-audiovisual_run-01_meg.json
|------------ sub-01_ses-01_task-audiovisual_run-01_channels.tsv
|------------ sub-01_ses-01_task-audiovisual_run-01_meg.fif
|------------ sub-01_ses-01_task-audiovisual_run-01_events.tsv
|--------- anat/
|------------ sub-01_ses-01_T1w.nii.gz
|------------ sub-01_ses-01_T1w.json
Finally, we can read the BIDS data we created as well.
bids_fname = bids_basename + '_meg.fif'
raw = read_raw_bids(bids_fname, output_path)
Out:
Opening raw data file /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_meg.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Reading events from /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_events.tsv.
Reading channel info from /home/stefanappelhoff/mne_data/MNE-sample-data/../MNE-sample-data-bids/sub-01/ses-01/meg/sub-01_ses-01_task-audiovisual_run-01_channels.tsv.
/home/stefanappelhoff/Desktop/bids/mne-bids/mne_bids/read.py:165: RuntimeWarning: The unit for channel(s) STI 001, STI 002, STI 003, STI 004, STI 005, STI 006, STI 014, STI 015, STI 016 has changed from V to NA.
raw.set_channel_types(channel_type_dict)
The data is already in a convenient form to create epochs and evokeds.
events, event_id = mne.events_from_annotations(raw)
epochs = mne.Epochs(raw, events, event_id)
epochs['Auditory'].average().plot()
Out:
Used Annotations descriptions: ['Auditory/Left', 'Auditory/Right', 'Button', 'Smiley', 'Visual/Left', 'Visual/Right']
320 matching events found
Applying baseline correction (mode: mean)
Not setting metadata
Created an SSP operator (subspace dimension = 3)
3 projection items activated
<Figure size 640x500 with 3 Axes>
Total running time of the script: ( 0 minutes 4.256 seconds)