mne_icalabel.iclabel.run_iclabel#
- mne_icalabel.iclabel.run_iclabel(images, psds, autocorr, backend='pytorch')[source]#
Run the ICLabel network on the provided set of features.
The features are un-formatted and are as-returned by
get_iclabel_features
. For more information, see Pion-Tonachini et al.[1].- Parameters:
- images
array
of shape (n_components, 1, 32, 32) The topoplot images.
- psds
array
of shape (n_components, 1, 1, 100) The power spectral density features.
- autocorr
array
of shape (n_components, 1, 1, 100) The autocorrelation features.
- backend
None
|torch
|onnx
Backend to use to run ICLabel. If None, returns the first available backend in the order
torch
,onnx
.
- images
- Returns:
- labels
array
of shape (n_components, n_classes) The predicted numerical probability values for all labels in ICLabel output. Columns are ordered with
'Brain'
,'Muscle'
,'Eye'
,'Heart'
,'Line Noise'
,'Channel Noise'
, and'Other'
.
- labels
References