Skip to content

KIT phantom data.

https://mne.tools/dev/documentation/datasets.html#kit-phantom-dataset

Demonstrated features

Feature This example
MEG processing
EEG processing
Maxwell filter
Frequency filter
Artifact regression
SSP
ICA
Evoked contrasts
Time-by-time decoding
Time-generalization decoding
CSP decoding
Time-frequency analysis
BEM surface creation
Template MRI

Dataset source

This dataset was acquired from https://mne.tools/dev/generated/mne.datasets.phantom_kit.data_path.html

Configuration

Click to expand
Python
bids_root = "~/mne_data/MNE-phantom-KIT-data"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/MNE-phantom-KIT-data"
task = "phantom"
ch_types = ["meg"]

# Preprocessing
l_freq = None
h_freq = 40.0
regress_artifact = dict(
    picks="meg", picks_artifact=["MISC 001", "MISC 002", "MISC 003"]
)

# Epochs
epochs_tmin = -0.08
epochs_tmax = 0.18
epochs_decim = 10  # 2000->200 Hz
baseline = (None, 0)
conditions = ["dip01", "dip13", "dip25", "dip37", "dip49"]

# Decoding
decode = True  # should be very good performance

Generated output

Summary reports

sub-01_task-phantom_report.html

sub-average_task-phantom_report.html