Skip to content

Single-subject infant dataset for testing maxwell_filter with movecomp.

https://openneuro.org/datasets/ds004229

Demonstrated features

Feature This example
MEG processing
EEG processing
Maxwell filter
Frequency filter
Artifact regression
SSP
ICA
Evoked contrasts
Time-by-time decoding
Time-generalization decoding
CSP decoding
Time-frequency analysis
BEM surface creation
Template MRI

Dataset source

This dataset was acquired from https://openneuro.org/datasets/ds004229

How to download this dataset

Run in your terminal:

Run in your terminal
openneuro-py download \
             --dataset=ds004229 \
             --include=sub-102 \
             --include=sub-emptyroom/ses-20000101

Configuration

Click to expand
Python
import mne
import numpy as np

bids_root = "~/mne_data/ds004229"
deriv_root = "~/mne_data/derivatives/mne-bids-pipeline/ds004229"

task = "amnoise"
crop_runs = (300.0, 600.0)  # 5 minutes from the middle of the recording for speed

find_flat_channels_meg = True
find_noisy_channels_meg = True
use_maxwell_filter = True
mf_destination = mne.transforms.translation(  # rotate backward and move up
    z=0.055,
) @ mne.transforms.rotation(x=np.deg2rad(-15))
mf_mc = True
mf_st_duration = 10
mf_int_order = 6  # lower for smaller heads
mf_mc_t_step_min = 0.5  # just for speed!
mf_mc_t_window = 0.2  # cleaner cHPI filtering on this dataset
mf_filter_chpi = False  # for speed, not needed as we low-pass anyway
mf_mc_rotation_velocity_limit = 30.0  # deg/s for annotations
mf_mc_translation_velocity_limit = 20e-3  # m/s
mf_esss = 8
mf_esss_reject = {"grad": 10000e-13, "mag": 40000e-15}
ch_types = ["meg"]

l_freq = None
h_freq = 40.0

# SSP and peak-to-peak rejection
spatial_filter = "ssp"
n_proj_eog = dict(n_mag=0, n_grad=0)
n_proj_ecg = dict(n_mag=2, n_grad=2)
ssp_ecg_channel = "MEG0113"  # ECG channel is not hooked up in this dataset
reject = ssp_reject_ecg = {"grad": 2000e-13, "mag": 5000e-15}

# Epochs
epochs_tmin = -0.2
epochs_tmax = 1
epochs_decim = 6  # 1200->200 Hz
baseline = (None, 0)
report_add_epochs_image_kwargs = {
    "grad": {"vmin": 0, "vmax": 1e13 * reject["grad"]},  # fT/cm
    "mag": {"vmin": 0, "vmax": 1e15 * reject["mag"]},  # fT
}

# Conditions / events to consider when epoching
conditions = ["auditory"]

# Decoding
decode = False

# Noise estimation
noise_cov = "emptyroom"

Generated output

Summary reports

sub-102_task-amnoise_report.html

sub-average_task-amnoise_report.html